
INSTRUMENTATION, MODELING, AND SOUND METAMODELING FOUNDATIONS FOR

COMPLEX HYBRID SYSTEMS

by

NATASHA AMELIA JARUS

A DISSERTATION

Presented to the Graduate Faculty of the

MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY

In Partial Fulfillment of the Requirements for the Degree

DOCTOR OF PHILOSOPHY

in

COMPUTER ENGINEERING

2021

Approved by:

Sahra Sedigh Sarvestani, Advisor
Ali R. Hurson, Co-Advisor

Minsu Choi
Jonathan Kimball
George Markowsky

Copyright 2021

Natasha Amelia Jarus

All Rights Reserved

iii

ABSTRACT

Many of our critical infrastructures, from power grids to water distribution networks, are

complex hybrid systems that use software to control their non-trivial physical dynamics. These

systems must be able to capably serve their purpose, while also being reliable, dependable, safe,

secure, and efficient. Representation and analysis of these features requires the creation of several

distinct models. These models may encode design goals or be derived from collected instrumentation

data, reflecting both how a system ought to operate and how it does operate. It is essential to ensure

that all of these models consistently and accurately describe the same system. Adding or removing

detail in one model may necessitate changes to several others.

This work focuses on system instrumentation, modeling, and metamodeling. Our instrumen-

tation and modeling work studies the behavior of control systems when exposed to electromagnetic

disturbances. These disturbances, which may lead to data corruption, system crashes, or hardware

damage, present a challenge to engineers. We develop instrumentation for monitoring systems for

such disturbances, methods for analyzing the data from our instrumentation, and models of system

function which can detect electromagnetic disturbances, including many that do not cause user-visible

failures.

Metamodeling offers a means of relating disparate models of a system, describing changes

to models, and propagating those changes to other models. Our metamodeling work focuses on

adding and removing detail from models — model refinement and generalization, respectively — and

on connecting models that use different formalisms — model transformation. In order for these

operations to produce meaningful results, we must ensure that they are sound ; that is, they must

produce models which describe, to the greatest extent possible, the same system as the models

from which they are produced. We begin by creating a theory of abstract interpretation for system

modeling. This theory defines a relationship between models and systems and enables verification of

the soundness of our metamodeling operations. From this foundation, we create model refinement

and generalization operations for specific modeling formalisms. Finally, we show how these operations

can be used to perform sound model transformations.

iv

ACKNOWLEDGMENTS

I extend my sincere gratitude and appreciation to my advisor, Dr. Sahra Sedigh Sarvestani.

Her mentorship across two years of undergraduate research and seven years of doctoral research has

been invaluable both in guiding my work and in developing my skills as a researcher, communicator,

and educator. Her patience and kindness have softened the difficulties of research and of growing

as a person. Her technical and social knowledge have broadened my perspective not only on the

complexity of the systems that pervade our lives but also on the diversity of the people for whom we

engineer those systems.

The depth of my gratitude to my loving wife, Hannah Goodman, and my dear metamour,

Shasta Johnson, is inexpressible. Without your love and care, I would not be the person I am

today. Your support through harrowing times and life-changing decisions has enabled me to pursue

challenging goals and to achieve them. Thanks to your hard work and personal sacrifice, I have

enjoyed the privilege of being able to prioritize my research and teaching responsibilities. Your

thoughtful guidance and comments on every aspect of my work has enabled me to present polished

work and navigate complex social situations. With all my being, thank you.

To my co-advisor, Dr. Ali Hurson, thank you for your insightful comments, your willingness

to share your extensive knowledge, your friendly support, and your dry wit.

I thank my committee members, Dr. Jonathan Kimball, Dr. George Markowsky, and

Dr. Minsu Choi, for giving your time and thought to my work, for offering fresh perspectives and

specialized knowledge, and for your advice on academic matters and on my career.

My labmates deserve a special commendation. A Ph.D. dissertation is never the work of

only one person; without your hard work and dedication, significant parts of this research would

not have been completed. Thank you to Mark Woodard, Koosha Marashi, Ty Morrow, Madison

Childress, Evan Hite, and Connor Jones. Special thanks to Michael Wisely for his support for many

of my undertakings in graduate school. I extend my deepest appreciation to Laika Klingbeil and Joel

Schott, who exerted incredible effort to achieve research accomplishments.

In addition, I thank my collaborators in the Missouri S&T Center for Electromagnetic

Engineering, Dr. Chulsoon Hwang, Dr. Omid Hoseini Izadi, Runbing Hua, and Dr. Pratik

Maheshwari, for sharing their expertise in electromagnetic engineering, access to their laboratory

v

equipment, and their time in planning, designing, and performing experiments. Jerry Tichenor and

Kevin Hasner also deserve thanks for their assistance and advice in creating instrumentation for our

work.

I am very grateful to my friend Michele White, whose knowledge of electrical engineering

broadened my understanding of my research and whose ineffable enthusiasm and boundless energy

made our collaboration a joy.

Three of my course instructors deserve particular praise. Dr. Lindgren Johnson, thank you

for piquing my interest in a career in writing and research and for your encouragement to publish my

first research paper. Dr. John Seiffertt, you taught me to understand the language of mathematics in

a completely new way. And especial thanks to Dr. Ilene Morgan for inspiring me to study abstract

algebra, for her thoughtful comments on my research work, and for her friendship and support during

my graduate career.

Finally, I thank my chickens, Gracie, Pig, Hank, Annie, Bertha, and Lion for the compan-

ionship, love, and joy they brought me during my study. I am especially grateful to Bertha for her

support through a particularly dark time and for her efforts hengineering our instrumentation.

vi

TABLE OF CONTENTS

Page

ABSTRACT. iii

ACKNOWLEDGMENTS . iv

LIST OF ILLUSTRATIONS . x

LIST OF TABLES. xii

SECTION

1. INTRODUCTION. 1

1.1. INSTRUMENTATION AND MODELING OF THE EFFECTS OF ELECTRO-
MAGNETIC INTERFERENCE AND ELECTROSTATIC DISCHARGE ON SOFT-
WARE .. 2

1.2. COMPLEX HYBRID SYSTEM METAMODELING .. 3

1.3. RESEARCH PROJECTS AND CONTRIBUTIONS . 5

1.4. OUTLINE .. 8

2. PART 1: INSTRUMENTATION AND ANALYSIS FOR EMD. 10

2.1. ESD INSTRUMENTATION APPROACHES . 11

2.2. EMI INSTRUMENTATION APPROACHES . 13

2.3. SYSTEM MONITORING AND ANOMALY DETECTION APPROACHES. 14

2.4. SUMMARY .. 15

3. SOFTWARE INSTRUMENTATION APPROACH . 16

3.1. ESD INSTRUMENTATION.. 17

3.1.1. Initial Approach . 17

3.1.2. Improved Approach . 18

3.2. EMI INSTRUMENTATION .. 19

4. EMD EXPERIMENT DESIGN. 21

4.1. EXPERIMENT DESIGN .. 21

4.1.1. ESD Experiment Design . 22

4.1.2. EMI Experiment Design . 22

vii

4.2. EXPERIMENTAL DATA .. 23

4.2.1. Collected ESD Experiment Data . 23

4.2.1.1. Constructing execution graphs. 24

4.2.1.2. Constructing the unified execution graph . 24

4.2.1.3. Graph analysis . 24

4.2.2. Collected EMI Experiment Data . 25

5. STATISTICAL ANALYSIS OF PERIPHERAL OPERATION . 27

5.1. ANALYSIS OF DATA FROM ESD INSTRUMENTATION.. 28

5.1.1. Registers of Interest . 28

5.1.2. Execution Graphs . 30

5.1.3. TLP pulse voltage . 32

5.2. ANALYSIS OF DATA FROM EMI EXPERIMENTS . 32

5.2.1. Variance & Dispersion . 34

5.2.2. Autocorrelation & Serial Dependence . 34

5.2.2.1. Unsigned serial dependence . 35

5.2.2.2. Signed serial dependence . 37

6. CLASSIFICATION OF PERIPHERAL OPERATION . 41

6.1. DETECTING ESD EVENTS . 42

6.1.1. Training . 42

6.1.2. Classification. 43

6.1.3. System State Transitions . 43

6.1.4. Delta . 44

6.2. DETECTING EMI EVENTS . 46

6.2.1. Classification Events . 46

6.2.2. Classification Techniques . 47

6.2.3. Training and Evaluation Approach . 47

6.2.4. Results . 48

7. PART 2: METAMODELING FOR COMPLEX HYBRID SYSTEMS . 52

viii

7.1. OVERVIEW OF MODELING AND METAMODELING.. 53

7.2. METAMODELING APPROACHES. 56

7.3. REFINEMENT AND GENERALIZATION OF MODELS . 58

7.4. MODEL TRANSFORMATION APPROACHES . 61

7.5. SUMMARY .. 64

8. ABSTRACT INTERPRETATION OF MODELS . 65

8.1. SOUNDNESS AND COMPLETENESS . 65

8.2. SEMANTICS OF PROGRAMS AND SYSTEMS .. 65

8.3. SPECIFYING SYSTEM SEMANTICS. 66

8.4. SPECIFYING MODEL SEMANTICS. 67

8.5. RELATING MODELS AND PROPERTIES . 68

8.6. ABSTRACTION AND CONCRETIZATION .. 69

9. REFINEMENT & GENERALIZATION . 72

9.1. MARKOV IMBEDDABLE STRUCTURE MODELS . 72

9.1.1. Properties of MIS Reliability Models . 73

9.1.1.1. Equivalences. 74

9.1.1.2. Well-formedness properties. 74

9.1.2. Examples . 75

9.1.3. Generalization of MIS Properties . 75

9.1.3.1. One-step generalizations of dependencies . 75

9.1.3.2. Multi-step generalization of dependencies . 79

9.1.3.3. Generalization as a partial order . 79

9.1.4. Refinement of MIS Properties . 81

9.1.4.1. One-step refinements . 81

9.1.4.2. Multi-step refinements . 83

9.1.4.3. Refinement as the dual of generalization. 84

9.1.5. Connecting MIS Models With Their Properties . 84

9.1.5.1. The properties lattice. 84

9.1.5.2. MIS models. 85

ix

9.1.5.3. Abstraction and concretization . 86

9.1.5.4. Example . 86

9.1.6. Superstates and Non-deterministic Choice . 88

9.1.6.1. Non-deterministic choice of causes and effects. 91

9.1.6.2. Well-formedness properties with non-deterministic choice 92

9.1.6.3. Generalizations and refinements for non-deterministic choice 94

10. MODEL TRANSFORMATION . 100

10.1. SOUNDNESS . 101

10.2. EXAMPLE.. 102

11. CONCLUSIONS AND FUTURE WORK. 108

11.1. FUNCTIONAL MODELING OF EMD EFFECTS . 109

11.2. MODEL FAITHFULNESS . 110

11.3. REFINEMENT AND GENERALIZATION FOR PHYSICAL TOPOLOGY MODELS111

APPENDICES

A. LATTICE THEORY . 113

B. GALOIS CONNECTIONS . 118

C. ABSTRACT INTERPRETATION. 121

REFERENCES . 126

VITA . 136

x

LIST OF ILLUSTRATIONS

Figure Page

1.1. EMI instrumentation and modeling approach. 3

1.2. Relationship between properties and models of a system . 5

3.1. USB subsystem block diagram . 16

3.2. OHCI host controller register snapshot and state. 19

3.3. EHCI host controller register snapshot and corresponding state . 20

5.1. Probability distributions of register values . 29

5.2. Execution graph of one baseline trace and one ESD-exposed execution trace 31

5.3. Average state occurrences per log . 32

5.4. Relationship between pulse voltage and ESD-caused transitions . 33

5.5. Gini and Extropy dispersion measures for each dataset as well as for all EMI-exposed
time series (“Exposed”) . 35

5.6. Cramer’s v measures for lags 1–15, 20–24, and 31–35 . 36

5.7. Signed serial dependence measures for lags 1–15, 20–24, and 31–35. 38

6.1. Weights with and without δ . 45

6.2. Effect of δ on accuracy . 46

6.3. Comparison of classifier performance . 51

7.1. Relationships among MIS and Topology modeling domains and Properties domains 52

7.2. Overview of related literature . 63

8.1. Soundly connecting models, properties, and systems . 69

8.2. Model and system properties interaction diagram .. 70

9.1. Two-Component series system Markov chain . 86

10.1. Initial model transformation concept . 100

10.2. Transforming models through concretization and abstraction . 100

10.3. Transforming sets of models . 101

10.4. Sound model transformation . 102

10.5. Two-line topology example . 103

10.6. Markov chain representation of the example MIS model . 104

xi

APPENDICES

A.1. The lattice for (P(S),⊆) . 117

C.1. Relationship between transformation and a correctness relation . 122

C.2. Relationship between program transformation and representation functions 124

C.3. Using a Galois connection to construct a representation function . 125

xii

LIST OF TABLES

Table Page

4.1. Summary of data collected from experiments . 25

4.2. State space and register values from corresponding snapshot for EMI experiment 26

5.1. Probability distribution of register values: HcInterruptEnable and HcInterruptDisable 28

5.2. Percent of sequences where serial dependence is significant (α = 0.05) at a given lag 39

6.1. Average classifier performance for various n state trajectories . 44

6.2. Events generated from dataset at each lag . 49

6.3. Best classifier configurations and performance . 50

10.1. State definition matrix . 104

1. INTRODUCTION

The expansion of computers’ capabilities, especially their ability to replace labor costs

with capital acquisition, has precipitated a proliferation of complex systems incorporating digital

control. Most critical infrastructure is an example of this: power grids containing sensors and

software-controlled circuit breakers and other power flow control mechanisms, water distribution

networks with automated valves, and even vehicles which contain complex networks of computers

and are guided by computerized traffic control systems. These systems are built to a variety of design

requirements. Not only do they need to be capable of meeting operational requirements but they

also must be dependable, safe, secure, sustainable, and easy to repair and upgrade. We refer to these

systems, characterized by significant interdependence between non-trivial physical dynamics and

digital control, as complex hybrid systems [1].

Models are used to better understand, predict, and control these complex systems. Designers

may want to evaluate the performance of a system or predict how it will fail. Instrumentation and

monitoring software use models to determine whether a system is operating as intended. During

maintenance and upgrades, models assist in identifying failures and ensuring changes are compatible

with existing infrastructure. Models may encode a design goal for a system, such as a model power

grid which assumes linear operation of components, or they may be derived from empirical data

gathered experimentally. A myriad of modeling formalisms have been created to capture aspects of

system operation.

While this work is not exclusive to them, we take a particular focus on models of system

failure. We construct models of a system’s reliability, a probabilistic measure of how long it will remain

functional; and resilience, a proportional measure of the extent of performance degradation and speed

of recovery from a failure. This leads to an investigation of generalization and refinement for reliability

models, exploring in depth the information present in a particular reliability modeling formalism and

the connections between different reliability models of the same system. In addition, we construct

approximate models of system function which are used to identify operational anomalies. These

anomalies arise from electromagnetic interference acting on computing hardware. No analytical model

of the effect of this interference on software have been developed, so models are constructed entirely

from empirically gathered data. These studies demonstrate the variety of perspectives included in

dependability modeling: interdependencies among components, failure recovery procedures, and

interactions between low-level physics and high-level control software.

2

The other main focus of this work is a study of relationships between models of a system.

Firm distinctions between instrumentation-based modeling and design-based modeling cannot be

drawn: conclusions drawn from instrumentation, design, and modeling all inform each other. As

understanding of a system improves, models change to incorporate this knowledge and changes to

instrumentation or system design may also be made. We propose work toward explicitly identifying

the connections among models and correctly propagating changes through the models of a system.

1.1. INSTRUMENTATION AND MODELING OF THE EFFECTS OF ELECTRO-
MAGNETIC INTERFERENCE AND ELECTROSTATIC DISCHARGE ON SOFT-
WARE

For critical infrastructure and other safety-critical applications, it is essential to understand

the failure modes of control electronics and to improve their dependability when possible. Two threats

which predominantly affects control systems are electrostatic discharge (ESD) and electromagnetic

interference (EMI). Exposure to large electric, magnetic, or electromagnetic fields can induce spurious

voltages or currents in computer hardware. These faults can lead to display or audio glitches, corrupted

data, program crashes or mis-execution, system restarts, or permanent hardware damage. Thus,

understanding and mitigating the effects of ESD and EMI (henceforth, electromagnetic disturbance,

or EMD) on digital controllers is essential.

A significant challenge in developing a comprehensive understanding of how EMD impacts

control systems is determining how hardware-level EMD alter software operation. Though a control

system is not typically what is imagined as a complex hybrid system, it is true that control systems

themselves couple digital control with the non-trivial physics of their hardware realizations. An

additional complexity is the challenge of instrumentation itself: placing hardware instrumentation

can be invasive and expensive, but software instrumentation is inherently unreliable as it is not

decoupled from the system and thus can also be affected by EMD. Consequently, most studies of

EMD characterize either hardware-level operation of a test system or high-level software operation of

commercially available systems.

EMD mitigation is viewed through two distinct perspectives. In the case that a system is

being designed to operate in a fixed environment over a long period of time, the electromagnetic

characteristics of the environment can be determined and the system designed and verified to

withstand the EMD present. While this approach can be very effective, upgrades to the system

require high-effort re-verification. Furthermore, in situations where the environment is not well

understood or has uncontrolled aspects — for instance, an operator plugging a device into a USB

3

Identify
appropriate
indicators of

system
operation

Cause
disturbance

Observe
changes in
indicators

Understand System Operation
What di erentiates normal from abnormal?

Develop
system
state

classi er

Use model
to detect

presence of
faults

Populate
stochastic
model with
data from
indicators

Predict System State

Figure 1.1. EMI instrumentation and modeling approach

port — determining whether a system is sufficiently shielded can be challenging. On the other hand,

the EMD resilience perspective [2] proposes using instrumentation to continually monitor systems in

the field, detect when their operation is impacted by EMD, and determine whether additional EMD

mitigation is needed on an ongoing basis.

We propose an instrumentation and modeling approach designed to enable EMD resilience

with fine-grained software instrumentation of system peripherals as depicted in Figure 1.1. This

approach provides a low-overhead means of observing system peripheral operation, giving further

insight into the effects of EMD on software which may not be visible to an end-user. These effects

cannot be inferred from either software or hardware specifications of a system, nor do any analytical

models exist to predict their occurrence. Consequently, we use experimental data to derive models of

“normal” peripheral operation, allowing us to detect changes in operation that may be attributable to

EMD. Furthermore, we propose statistical methods of validating the ability of our instrumentation

to capture such operational anomalies.

1.2. COMPLEX HYBRID SYSTEM METAMODELING

Designers develop such systems through a process of careful modeling and simulation of

multiple aspects of a system. The combination of continuous-time physics and discrete-time control

creates a system whose performance is challenging to model. Furthermore, non-functional modeling

perspectives overlap with each other and with performance models. For example, a reliability model

may incorporate the timing of control inputs to a system, safety models and reliability models

may both contain information about component failures, and security and safety models are often

4

created in tandem to prevent safety overrides from being overlooked by security measures [3]. All of

these models have complementary perspectives on the system they model. Our work is focused on

identifying overlaps between the various ways of modeling a system, or modeling formalisms, and

using this information to more efficiently create and refine models.

Quantifying the information common to multiple models presents several challenges. Funda-

mentally, models approximate the operation of the system they describe [4]; even if an unambiguous

modeling formalism was available, modelers would not necessarily benefit from fully specifying a

system’s operation. The modeling process is necessarily iterative; it starts with a general, high-level

specification, then more detail is added as needed. Furthermore, modelers planning maintenance or

upgrades to existing systems often work with incomplete technical specifications and components in

unknown condition. In identifying overlapping information among models, we need to account for

partial, approximate knowledge of the system being modeled.

Models may have differing perspectives on their shared knowledge — they represent the same

aspects of a system differently. For example, a performance model of a power grid may represent each

transmission line as an inductor-capacitor-resistor circuit, but the corresponding reliability model

may view that transmission line as a single component. Alternatively, the performance model may

not include circuit breakers as they are irrelevant to “ideal” performance, but a reliability model

may incorporate them into a more precise model of cascading failures in the system. Even when

information (e.g., transmission line dynamics or circuit breaker locations) is known about a system,

it may not appear in all models of that system. Again, we must account for the fact that models

represent only an approximation of the system they model.

We attempt to address these challenges by creating metamodeling formalisms that reduce the

effort required to model a system and ensure that various models of a system are consistent. Models

aim to study a system or phenomenon through an abstract representation; metamodeling is the study

of these representations and can be considered a higher level of abstraction [5]. More detail can be

added to a model by refining it, or extraneous detail removed by generalizing it. Such detail might be

removed because it happened to be an incorrect or undesirable assumption or to reduce the complexity

of a model to make it tractable for evaluation. Furthermore, we can transform the information

in one model to another model expressed in a different modeling formalism. This can be used to

add new modeling constructs to an existing modeling formalism, such as transforming a reliability

model of a water distribution network into a reliability model that incorporates computer-controlled

5

Availability: 95%

Model of a Smart Power Grid System Properties

Infer properties of a

system from models of it

Derive other models of

the system from

system properties

Customer Service

Index: 1.00

Other Models of

the Smart Grid

Figure 1.2. Relationship between properties and models of a system

valves intended to mitigate failures. It could also be used to produce, say, a partial specification of a

reliability model from a model of a power grid’s architecture and performance. We believe such a

metamodeling process, illustrated in Figure 1.2, can be created.

The concepts of transformation, refinement, and generalization are of great interest from a sci-

entific perspective. The process of defining a modeling formalism and refinements and generalizations

for it consists of understanding that formalism’s perspective of a system, encoding that perspective

into a language, and determining the operations that can be represented in that language. Doing so

can lead to a better understanding of the limitations of a given formalism and the assumptions it

makes about system operation. Model transformation translates a formalism’s perspective (and its

operations) into the language of a different model formalism. By creating transformations between

formalisms we can, for example, determine the effect that changing the topology of a system has on

that system’s reliability.

1.3. RESEARCH PROJECTS AND CONTRIBUTIONS

My doctoral research has focused on modeling and metamodeling of complex systems. This

has taken the form of several interrelated projects.

The first project was focused on creating software instrumentation and analytical models

to detect, understand, and mitigate the effects of electromagnetic and electrostatic interference in

embedded system peripherals [6–9]. We were able to successfully detect electrostatic interference in a

USB bus control chip using only software instrumentation executing on the system to which the bus

controller was attached. This approach presented several challenges: the bus controller’s operation

needs to be monitored frequently enough that anomalies are detected before being overwritten by its

driver, but this precise monitoring needs to be accomplished with very low overhead and without

interfering with or negatively affecting the system’s operation. Our instrumentation approach is

unique in its ability to illuminate the minutiae of how a failure affects the operation of a system.

6

Developing this approach requires an understanding of the effect of interference on the hardware of a

system, as well as understanding of how these effects propagate to the software executing on that

hardware.

A second project focused on dependability modeling of smart power grids [10]. We applied

the Markov Imbeddable Structure (MIS) reliability modeling technique to the IEEE 9-bus system

to determine its reliability. An intelligent control device, a static synchronous series compensator,

was added to the system and the reliability model updated to incorporate the new device. We were

thus able to determine how the addition of an intelligent control device affects the system’s overall

reliability. Furthermore, we modeled the resilience achieved by two different recovery strategies for a

particular failure and compared them based on two different quantitative metrics.

The final project aims to create a sound mathematical basis for metamodeling complex

systems [11–14]. To achieve this goal, we create a framework for defining transformations, refinements,

and generalizations in a way that meaningfully relates them to model fidelity and enables the definition

of properties of these operations, which in turn enable reasoning about them. This approach is based

on Abstract Interpretation [15], a mathematical formalism initially created by Radhia and Patrick

Cousot for static program analysis. Abstract interpretation provides a way of translating a potentially

intractable problem, e.g., determining the set of states reachable by a computer program, into a

tractable problem by abstracting (eliminating some detail from) that problem. For instance, consider

a computer program that takes an integer as input and produces an integer as output. Rather than

exactly predicting the program’s output for a specific input, we might abstractly interpret that

program as one that takes as input a range of numbers and produces as output a range of numbers.

The result of our abstract analysis might overestimate the range of results from the program, but the

abstract interpretation technique ensures that our result is sound ; that is, it includes all possible

outputs of the program.1

We think of models as abstractions of a system’s semantics — its structure and operation.

We propose a theory of abstract interpretation for system modeling, which enables relating the

abstract, approximate operation of models to the exact operation of the system they represent.

With this metamodeling perspective, our modeling goals become faithful transformations of system

semantics. Properties of the system being modeled are used to connect various modeling formalisms.

For each modeling formalism, we specify what these properties are, as well as how to translate them
1This problem is tractable in spite of the halting problem because the abstract interpretation can return the range

of “all integers” — in effect, it is allowed to say “I don’t know.” Achieving more specific results requires more detailed
abstract interpreters.

7

into models and vice versa. Finally, by showing that these properties and this translation satisfy

certain constraints, we can derive transformation, refinement, and generalization operators for each

modeling formalism.

I have also conducted an extensive literature survey on modeling of dependability attributes of

cyber-physical systems. The survey has been submitted to the ACM Transactions on Cyber-Physical

Systems [16].

My research contributions and publications to date are the following. The seventh publication

relates to two different research contributions and is listed under both.

• Software-based detection and analysis of electromagnetic and electrostatic interference:

1. A. Sabatini, N. Jarus, P. Maheshwari, and S. Sedigh, “Software instrumentation for failure

analysis of USB host controllers,” in Proceedings of the IEEE International Instrumentation

and Measurement Technology Conference (I2MTC), May 2013.

2. N. Jarus, A. Sabatini, P. Maheshwari, and S. Sedigh Sarvestani, “Software-based monitoring

and analysis of a USB host controller subject to electrostatic discharge,” in Proceedings

of the CSI/CPSSI International Symposium on Real-Time and Embedded Systems and

Technologies (RTEST), Jun. 2020.

3. N. Jarus, A. Sabatini, P. Maheshwari, and S. Sedigh Sarvestani, “Detection, analysis, and

prediction of the effects of electrostatic discharge on a USB host controller,” submitted to

IEEE Transactions on Electromagnetic Compatibility.

4. N. Jarus, J. Schott, L. Klingbeil, and S. Sedigh Sarvestani, “Observation, analysis, modeling,

and classification of USB host controller operation under electro-magnetic interference,”

submitted to IEEE Transactions on Electromagnetic Compatibility.

• Dependability modeling of smart grids:

5. M. N. Albasrawi, N. Jarus, K. A. Joshi, and S. Sedigh Sarvestani, “Analysis of reliability

and resilience for smart grids,” in Proceedings of the IEEE 38th Annual Computer Software

and Applications Conference, Jul. 2014.

• Survey on modeling of non-functional aspects of cyber-physical systems:

6. N. Jarus, M. Woodard, K. Marashi, S. Sedigh Sarvestani, J. Lin, A. Faza, and P. Ma-

heshwari, “Survey on modeling and design of cyber-physical systems,” submitted to ACM

Transactions on Cyber-Physical Systems.

8

• Creating a metamodeling approach based on abstract interpretation:

7. N. Jarus, S. Sedigh Sarvestani, and A. R. Hurson, “Models, metamodels, and model

transformation for cyber-physical systems,” in Proceedings of the Seventh International

Green and Sustainable Computing Conference (IGSC), Nov. 2016.

8. N. Jarus, S. Sedigh Sarvestani, and A. R. Hurson, “Facilitating model–based design

and evaluation for sustainability,” in Proceedings of the Ninth International Green and

Sustainable Computing Conference (IGSC), Oct. 2018.

• Formalizing model transformation using abstract interpretation of models:

7. N. Jarus, S. Sedigh Sarvestani, and A. R. Hurson, “Models, metamodels, and model

transformation for cyber-physical systems,” in Proceedings of the Seventh International

Green and Sustainable Computing Conference (IGSC), Nov. 2016.

9. N. Jarus, S. Sedigh Sarvestani, and A. R. Hurson, “Formalizing cyber–physical system

model transformation via abstract interpretation,” in Proceedings of the IEEE 19th

International Symposium on High Assurance Systems Engineering (HASE), Jan. 2019.

• Creating sound generalization and refinement operators for models:

10. N. Jarus, S. Sedigh Sarvestani, and A. R. Hurson, “Towards refinement and generalization

of reliability models based on component states,” in Proceedings of the Resilience Week

Symposium (RWS), Nov. 2019.

11. N. Jarus, S. Sedigh Sarvestani, and A. R. Hurson, “Refinement and generalization of

reliability models based on component states,” in preparation.

1.4. OUTLINE

The first half of this document focuses on creating instrumentation and models to detect

the effects of EMD on software operation. The second half is concerned with the metamodeling of

complex hybrid systems.

My research contributions towards EMD detection and analysis are summarized in Section 2,

along with relevant literature. Section 3 details the instrumentation methodology and experiment

design. Statistical modeling and analysis of instrumentation data is discussed in Section 5. In

Section 6, approaches to classifying peripheral operation are created and compared.

9

Section 7 provides an overview of my complex hybrid system metamodeling work and places

my research in the context of related literature. It also contains a more thorough discussion of

transformation, refinement, and generalization during the system modeling process. Sections 8, 9, and

10 detail my work on the identified research tasks. Section 8 describes how abstract interpretation

can be applied to metamodeling and discusses the requirements we must meet in order to do so.

Refinement and generalization of models is articulated in Section 9, which includes a case study on

reliability models. Section 10 defines model transformation in terms of our abstract interpretation

framework.

Finally, Section 11 summarizes this research and proposes future extensions.

The appendices contain detailed information on the various mathematical and modeling

formalisms used in this work.

10

2. PART 1: INSTRUMENTATION AND ANALYSIS FOR EMD

This research investigates the manifestation of electromagnetic disturbances (EMD) in the

operation of the software of system peripherals. We create a fine-grained software instrumentation

approach to EMD monitoring, apply statistical techniques to validate that it is capable of detecting

changes in operation when the system is exposed to EMD, and use classification approaches to

differentiate normal and EMD-exposed operation.

Modern electronics are increasingly susceptible to such disturbances, which may take the form

of silent failures, software crashes, system resets, or permanent hardware damage. Existing hardware-

based instrumentation approaches are invasive and costly, and software-based instrumentation

methods focus on high-level effects of EMD, such as screen glitches. Our work explores the gap

between these extremes: we have created low-level software instrumentation that can detect even

EMD which does not manifest as a user-visible failure. This approach may be applied to commercial

hardware in field-test conditions to ascertain whether EMD mitigations are sufficient, assist with

root cause analysis of EMD propagation and EMD-caused failures, or for continual monitoring and

detection as part of an EMD resilience program.

We group both Electrostatic Discharge (ESD) and Electromagnetic Interference (EMI) into

one term (EMD) because our instrumentation approach can be seamlessly applied to both. ESD

and EMI differ in their physical manifestation: ESD is caused by a very fast equalization of charge

potentials, whereas EMI is caused by coupling of an electromagnetic wave into a system. ESD

potentials range from sub-1kV to 10kV, with equalization times in the nanosecond range. It may be

introduced into a system via direct injection or by electric (E-field) or magnetic (H-field) coupling.

EMI is characterized by high-frequency (tens of kHz to GHz) waves with field strengths of 10kV/m

or more and manifests in a system via electromagnetic field coupling. Despite these differences,

both effect similar faults in hardware (e.g., bit flips, transistor latch-up, bond wire destruction)

and software (e.g., data corruption, system resets). Thus we group the two into EMD for our

instrumentation and analysis purposes.

The work presented here reflects two instrumentation and analysis projects, the first re-

searching ESD in a Samsung System on a Chip (SoC) and the second researching EMI in a RockChip

SoC. For both systems, we instrument the USB host controller, which manages all communication

across the USB bus and is thus particularly vulnerable to EMD. The ESD project offered promising

11

preliminary results which motivated the EMI project; the EMI project reinforced these results and

expanded on the statistical and classification techniques applied. Across both projects, we make the

following research contributions:

1. A method of using software instrumentation to observe and record the operation of system

peripherals (Section 3) [6–9].

2. An approach for analyzing instrumentation data using statistical techniques to validate the

instrumentation technique and characterize the change in system operation due to EMD

(Section 5) [6–9].

3. An approach to classifying system operation to distinguish when the system is experiencing

EMD (Section 6) [8, 9].

The remainder of this chapter discusses existing approaches to ESD and EMI instrumentation

and system operation monitoring. In Section 2.1 we characterize the effects of ESD on a system and

describe existing approaches to instrumentation and modeling of those effects. Section 2.2 likewise

characterizes EMI and describes hardware and software instrumentation methodologies. In addition

to EMI- and ESD-specific approaches, a variety of system monitoring and sensor anomaly detection

techniques have been investigated; the relevant ones are summarized in Section 2.3. Section 2.4

places our work in the context of this body of literature.

2.1. ESD INSTRUMENTATION APPROACHES

ESD-induced failures can be broadly categorized as either hard failures or soft failures [17].

In this context, a hard failure permanently damages the system so that components must be replaced.

Soft failures, on the other hand, can be recovered from; these failures are further characterized into

three levels based on the visibility of the failure and the action needed to recover from it:

Level 1) The system automatically recovers with no user-visible faults or loss or corruption of

data. Often this recovery is possible due to ESD-robust hardware and fault-tolerant

control protocols.

Level 2) The system experiences a system-level manifestation, such as momentary screen or

data corruption, but recovers without intervention.

Level 3) The system crashes or requires the user to perform an action, such as resetting the

system or unplugging and re-plugging a device, to recover from a fault condition.

These failures are studied using a variety of hardware- and software-based techniques.

12

Numerous studies have investigated the relationship between ESD interference and level 2

and 3 soft failures. Hardware ESD fault injection with direct injection and field injection probes

is described in [18–20]. These studies characterize integrated circuit (IC) immunity to ESD. The

sensitivity threshold for each IC was determined by injecting ESD at increasing voltages and observing

when errors occurred. In these studies, only user-visible errors, such as screen glitches or hardware

resets, were investigated.

Izadi et al. [21] extend this fault injection process by mapping the ESD sensitivity of a

single-board computer.The injection probes are attached to a 2-D scanner that sweeps them across

the board. At each point on a grid over the CPU, ESD is injected and the level at which the device

becomes vulnerable is recorded. The resulting map can be used to identify traces and components

that are at risk for ESD damage. Mapping is carried out at various CPU loads and clock speeds; the

authors determine that the system is most susceptible under heavy load and low clock speed.

Vora et al. [22] study user-visible soft failures in a microprocessor, a microcontroller, and an

FPGA. In particular, they observed a relationship between CPU load and likelihood of display flicker

on a microprocessor, indicating that ESD was coupling to the CPU chip rather than to the display

itself. Furthermore, they observed that the likelihood of certain failures—process termination and

display flicker—depend on the program executing at the time of the ESD event.

Investigating level 1 soft failures and understanding the root causes of higher-level soft

failures requires the ability to observe a system’s operation at a high level of detail. Vora et al.

[22, 23], Feng et al. [24] use a custom microcontroller running code which monitors register values

and system interrupts to study the effects of ESD on CPUs. While too invasive to use on a system

performing additional tasks, this approach gives a very fine-grained view of observable soft failures.

In particular, the authors observe numerous multiple bit errors in IO registers and frequent spurious

interrupt triggers.

The effect of ESD on USB devices in particular has also been investigated. Maghlakelidze

et al. [25] develop an automated testing system for studying soft failures in a USB interface on a

single-board computer. The system is characterized by injecting ESD pulses of varied voltage and

pulse width into specific IC pins. Soft failures are observed based on data transmission rate and

error messages in kernel logs. Under positive voltage injections, most failures did not require user

intervention; however, negative voltage injections produced numerous severe soft failures. Koch et al.

[26] further test USB-related soft failures and determine that likelihood of failure is also dependent

13

on the state of the USB protocol, i.e., what type of packets are being transmitted at the time of the

injection. Root cause analysis shows that many failures are caused by ESD coupling to the power

domains in the USB controller rather than to data lines.

While some soft failures are not user-visible, they may still be observable by software

monitoring of low-level system operation. Yuan et al. [27] continuously poll the status of a phase-lock

loop (PLL) embedded in a microcontroller; if the PLL unlocks, it can be assumed that the system

has experienced an ESD shock. While this approach provides an excellent measure of ESD events

on the microcontroller, it cannot measure peripheral ESD events because most peripherals do not

contain a separate PLL that can be monitored by the microcontroller.

Another case study of low-level system monitoring is carried out in [28] on a wireless router.

A debugging serial port on the router logs every context switch performed by the processors, giving

an approximate record of the execution path taken by processes running on the router. This data is

collected into system function graphs of both reference operating function and ESD-exposed function.

Several graph metrics are applied to these graphs; differences in metric values indicate that soft

failures can be observed by this monitoring technique.

2.2. EMI INSTRUMENTATION APPROACHES

The effects of EMI can be categorized according to their mechanism, broadly no effect,

interference, or destruction; by their duration, ranging from observed only for the duration of an

EMI event to permanent hardware damage; and by their criticality [29]:

U Unknown: Unobserved or indeterminate due to other failures.

N No effect : System fulfills its mission without disturbance.

I Interference: Disturbance does not influence the system’s function.

II Degradation: Disturbance impairs system capability or efficiency.

III Loss of main function: Disturbance prevents system from functioning.

Assessing the systemic effect of EMI on a sub-system incorporates these three perspectives plus

knowledge of the sub-system’s criticality in the function of the system.

14

Low-level investigation of EMI incorporates both modeling [30] and experimentation [31, 32].

These studies provide a detailed understanding of EMI-related component faults and suggest physical

mitigation techniques [33]. However, their precision and experimental rigor (e.g., requirements for

PCB design and instrumentation) make them infeasible for analyzing large-scale systems or consumer

hardware.

System-level EMI analysis for electromagnetic compatibility purposes primarily focuses on

EMI events with type II or III criticality. The effect of interference is determined based on reported

alarms, errors recorded in system logs, loss of network traffic, user-visible “glitches” in displays or

audio, or system crashes or resets [34, 35]. Such studies can characterize whole systems or focus on

the vulnerability of specific sub-systems [36]. A variety of confounding factors must be considered

when assessing system vulnerability to EMI, including EMI frequency and waveform, simultaneous

exposure to multiple waveforms, waveform reflections, mechanical vibrations, and intermodulation

effects [37, 38].

While shielding is an effective method for mitigating EMI effects [39], it is often not feasible

or cost-effective, especially for systems that are frequently upgraded or used in environments where

EMI exposure has not been characterized. EMI resilience takes a complementary approach wherein

systems are continually monitored for interference and improved as required [2, 40].

As part of an EMI resilience program, existing system peripherals have been investigated

for use as EMI sensors. Errors from USB and PS/2 devices and serial data communication rates

have been found to be correlated with EMI exposure [41, 42]. Furthermore, analog sensors including

temperature sensors for hard drives and processors and wifi and cellular received power indicators

also show anomalies under EMI exposure [43]. In addition to these studies, software instrumentation

for ESD detection has been investigated in [7, 8, 44].

2.3. SYSTEM MONITORING AND ANOMALY DETECTION APPROACHES

While not directly related to ESD events, software-based as well as combined hardware and

software system monitoring approaches have been studied extensively. Watterson and Heffernan

[45] outline research related to monitoring for runtime verification. System state is monitored by

some combination of hardware and software; this information is then used to verify that the system

is operating within specification. A software-specific study of fault monitoring is carried out in

[46]. The authors present a taxonomy of runtime monitoring approaches and discuss various system

requirements for different monitoring techniques.

15

Choudhuri and Givargis [47] develop a mixed hardware and software approach for logging

non-deterministic behavior in embedded systems. They modify a compiler to emit code that logs

messages to an attached storage system, reducing processing overhead on the low-power embedded

hardware being monitored. Reinbacher et al. [48] create a tool that converts an embedded system

software specification into both an executable and a configuration for a hardware monitor. The

hardware monitor interfaces with the embedded CPU and its communication buses and verifies the

operation of the system.

Delgado et al. [46] develop a software-based monitoring system for ATMs by instrumenting

the drivers for each hardware component to measure state and performance. A runtime checker uses

the resulting data to determine if the system is operating correctly. If not, recovery actions can be

taken to restore system availability.

False data injection, where sensor values are spoofed to hide a physical fault, can be detected

through clustering or statistical analysis [49, 50]. Detection of faults or attacks from instrumented

software or processor performance counters is also feasible via a combination of classification and

statistical correlation [51, 52].

2.4. SUMMARY

The distinction of our work is twofold. Our instrumentation captures much finer-grained

events, offering a more detailed view of how system operation is affected by EMD. For EMI events,

we gain visibility into U or I criticality as well as II or III criticality; for ESD, we make some level

1 soft failures visible. We achieve this with minimal impact to system operation, as the visibility

and operation of EMD-induced failures can change based on the processes running on the system.

Furthermore, we pioneer the use of categorical time series statistics and classification algorithms in

characterizing and identifying EMI-related operation anomalies. We use these tools to validate our

instrumentation and to identify anomalous sequences of events as a foundation for building real-time

EMI detection software or for root-cause analysis of EMI-caused failures.

16

3. SOFTWARE INSTRUMENTATION APPROACH

The goal of our instrumentation approach is to precisely capture the operation of a system

peripheral and to record that operation for analysis. EMD in an embedded system peripheral can

lead to incorrect peripheral operation, here termed ‘anomalous execution’. This includes unexpected

changes to values in the peripheral’s memory, failure to communicate, and peripheral resets. We

hypothesize that these effects are visible to software running on the system’s CPU and thus should

be detectable by monitoring software. Furthermore, peripherals with connections to external devices,

such as sensors, can be used to monitor the system for EMD.

This work can be applied to many computer peripherals, but we present it in the context

of a USB Host Controller on an embedded system running Linux. We have chosen to instrument

a USB host controller for our experiments, since USB is widely used and peripherals are readily

available. The role of the USB host controller is to handle the physical communication between the

host computer and the various USB devices connected to it, as shown in Figure 3.1. All control and

data communications to or from attached USB devices go through the host controller. The host

controller connects directly to the USB power and data lines, making it an excellent point to detect

EMD entering the system through those points.

The host computer communicates with the host controller via memory-mapped registers.

The host controller updates these registers as it performs various operations. It can also alert the host

computer that an event has happened via interrupts. As these registers and interrupts are the only

insight the host computer has into the internal operation of the host controller, our instrumentation

must be based on these data.

Client
Applications

USB
Peripheral

Drivers

USB Host
Controller

Driver

USB Host
Controller

USB
Peripheral
Hardware

Software Hardware

Host Controller Interface

Figure 3.1. USB subsystem block diagram

17

Our work focuses on non-invasive monitoring of the effects of EMD using software that does

not interfere with normal system operation. We primarily study changes in register values, as those

values control the operation of the peripheral device. Each system state is represented by an n-tuple

consisting of the values of the peripheral registers at a specific time. Some of the changes in system

state will be part of normal operation. When EMD is induced, however, we anticipate observation

of new (abnormal) states or unexpected transitions between normal states. These abnormal states

and transitions can indicate that the system is experiencing EMD. Our analysis avoids state-space

explosion by considering only states that are observed during system operation.

The USB host controller is a complex piece of hardware whose operation is quite opaque to

the system CPU. We cannot inspect any of its internal registers or microcode execution process. The

extent of our visibility into its operation is the control registers, which are exposed to the system. We

monitor these register values as an approximation of the host controller’s internal state. Recording

snapshots of register values as the system performs USB operations gives a trace of host controller

execution. The goal of this research is to use these traces to identify anomalous operation potentially

caused by EMD.

While the host controller’s registers are mapped in system memory, Linux’s memory protection

mechanisms prevent unprivileged programs from reading them. Thus, we must insert some software

into the Linux kernel to allow us access to those memory addresses. This approach captures register

values every time they are relevant to software executing on the CPU.

The remainder of this section details our process for creating instrumentation for two USB

host controllers. We begin with an unsuccessful attempt, then a successful approach to instrumenting

a host controller for ESD event detection. Following this, we replicate our approach on new hardware

for EMI detection.

3.1. ESD INSTRUMENTATION

We instrumented the USB host controller of a Samsung SoC. This host controller conforms

to the Open Host Controller Interface (OHCI) specification, which details the control registers and

appropriate values. Further details on the hardware can be found in Section 4.1.1.

3.1.1. Initial Approach. Our first design focused on directly reading USB register values

from their physical memory addresses. We adapted the Myregrw [53] software to better suit our

needs as a softprobe for ESD. This software consists of a Linux system driver and a program that

18

communicates with it. The driver reads the values of requested physical memory addresses. The

user-level program reads a configuration file specifying which addresses to request, repeatedly requests

the data at those addresses, and stores that data to a file.

We configured Myregrw to record the control and status registers for the USB host interface.1

We injected ESD into the host controller while Myregrw continuously sampled the registers. In

theory, ESD-caused changes should appear in the recorded register values.

However, the sampling rate of this softprobe was not sufficient to observe ESD-induced

errors. We empirically determined that the sampling rate of the software running on the system

used in our experiments is, on average, 342Hz. We can assume in the worst case that the system

executes one instruction per cycle and would reset a register value after one instruction. The system

we ran these experiments on has a 400MHz clock (see Section 4.1.1 for details). We can calculate a

pessimistic lower bound on the sampling rate by assuming the worst case scenario of a register value

changing every clock cycle. In this situation, we would log on average 342
400∗106 ∗100 = 0.000856% of its

values. As we have twenty-three registers to monitor, the effective sampling rate will be even lower.

Considering this low probability and the lack of information recorded from our experiments, we

devised a new measurement methodology with a higher sampling rate capable of recording additional

register values.

A confounding issue with this approach is the competition for access to these values between

the Myregrw driver and the USB host controller driver. By default, Linux drivers have execution

priority over any user applications, meaning that it would be nearly impossible to read all of

the register values after an error but before the USB host controller driver modifies the registers.

Therefore, we developed a new methodology that, in addition to providing a faster sampling rate,

ensures the register values are recorded before the USB host controller driver can modify them.

3.1.2. Improved Approach. We first enabled the debugging configuration already present

in the USB host controller driver. We then modified the drivers for the USB host controller. The host

controller driver consists of several functions that are called when certain events occur; for example,

ohci_irq is called when an IRQ occurs for the host controller. We configured each function to first

log its name and the values of the host controller registers to the system log. These modifications

allow us to observe not only register state changes but also the order in which different driver

functions are called. An example of such a log entry is shown in Figure 3.2.
1These are mapped in the physical address range 0x49000000–0x49000014.

19

function: ohci_irq
HcControl: 0x83
HcCommandStatus: 0x4
HcInterruptStatus: 0x24
HcInterruptEnable: 0x8000005e
HcInterruptDisable: 0x8000005e
HcHCCA: 0x338b1000
HcPeriodCurrentED: 0x0
HcControlHeadED: 0x339b2000
HcControlCurrentED: 0x0
HcBulkHeadED: 0x339b2080
HcBulkCurrentED: 0x0
HcDoneHead: 0x0
HcFmInterval: 0xa7782edf
HcFmRemaining: 0x80002760
HcFmNumber: 0x921d
HcPeriodicStart: 0x2a2f
HcLSThreshold: 0x628
HcRhDescriptorA: 0x2001202
HcRhDescriptorB: 0x0
HcRhStatus: 0x8000
HcRhDescriptorA: 0x2001202
HcRhPortStatus[0]: 0x103
HcRhPortStatus[1]: 0x100

Figure 3.2. OHCI host controller register snapshot and state

This approach is minimally invasive as the driver modifications are minor and do not affect

the logic of the driver itself. While this induces a constant overhead, in practice the overhead is small

and can be reduced by using, e.g., a buffer to hold log entries and a separate program to write those

entries to a file. The sampling rate is variable, but it exactly captures the CPU-visible operation of

the USB host controller.

3.2. EMI INSTRUMENTATION

The instrumentation for the EMI experiments follows the paradigm laid out in Section 3.1.2.

The logging format was modified to improve logging speed, and performance was measured. We apply

it to a Rockchip SoC with a USB host controller which conforms to the Enhanced Host Controller

Interface (EHCI) specification [54]. Our instrumentation is performed by making slight modifications

to the EHCI host controller driver. This driver has a number of procedures which are run when the

host controller causes an interrupt. We modify these procedures to record a snapshot of all the host

controller register values before the driver modifies them. In this fashion, we can precisely capture the

system-visible operation of the host controller without additional overhead from redundant checks.2

An example snapshot is shown in Figure 3.3. Notably, the EHCI specification has far fewer

registers than the OHCI specification.

28.6% wall clock overhead; 37.9% CPU cycle overhead.

20

Register snapshot:
Jul 29 21:38:38 rockpro64 kernel: [2789.449136] [EHCI DEBUG DUMP ehci_handshake] 0x10025, 0x8009,
0x37, 0x1abb, 0x0, 0xdfb5d000, 0xdfb5b000, 0x0, 0x1, 0x10025, 0x10025

Corresponding state:
Driver Function ehci_handshake
Command 0x10025
Status 0x8009
Interrupt Enable 0x37
TX Fill Tuning 0x0
“Configured” Flag 0x1
USB Mode 0x10025
USB Mode Extended 0x10025

Figure 3.3. EHCI host controller register snapshot and corresponding state

21

4. EMD EXPERIMENT DESIGN

The instrumentation approach described in Section 3 is a means to differentiating “normal”

and “abnormal” peripheral operation. As a basis for this characterization, we use our instrumentation

to record peripheral operation both under standard operating conditions and under exposure to

EMD. The data collected in these experiments forms the foundation for further analysis (Section 5)

and classification (Section 6) of peripheral operation.

The issue of determining what constitutes “normal” operation is quite challenging, and

depends on the environment in which a system is operating and the purpose for which it is being

used. One approach would be to place the system in an anechoic chamber during the experiments

which characterize “normal” operation. While this would precisely capture system operation under

no interference, it may miss operation which is well within “normal” operation but which is caused

by typical levels of interference in a given environment.

Another aspect of determining “normal” operation is choosing the operations a user will

perform on a system. On the one hand, characterizing “normal” operation by including a wide

variety of operations is essential to producing a dataset useful for detecting EMD in the field. On

the other, characterizing “normal” operation by a specific sequence of operations is encouraged by

good experimental design practices.

Thus, in this work, we instead characterize “baseline” system operation, defined by a specific

sequence of operations performed on a system operating on a laboratory bench. In addition, instead

of characterizing “abnormal” operation, we characterize “EMD-exposed” operation. The distinction

between these two is that, if the field strength is low enough, EMD may not couple into the system,

or it may not propagate to cause a software fault. It is not guaranteed that data recorded from

an EMD-exposed experiment contains operational anomalies, though it is likely. EMD-exposed

experiments are carried out with the system executing the same sequence of operations as the baseline

experiments.

4.1. EXPERIMENT DESIGN

This section describes our experimental design for both ESD and EMI detection, including

EMD generation, instrumented hardware, and experimental conditions.

22

4.1.1. ESD Experiment Design. The system used for tests was the FriendlyArm Mini2440

embedded development platform with a Samsung S3C2440 ARM926T processor [55]. Its USB host

interface conforms to the Open Host Controller Interface specifications [56]. The system ran a

modified Linux kernel based on the version 2.6.29 kernel downloaded from the FriendlyArm website

[55]. We set up the system with our logging software and connected it to a PC to control it during

the tests. During testing, a standard USB 2.0 flash drive was connected to the system’s USB port.

To ensure that the host controller is active during ESD injection, we copied a large file to or from

the flash drive during tests.

To thoroughly characterize system operation, ESD interference was injected using electric

(E) field and magnetic (H) field probes powered by a transmission line pulse (TLP) generator. For

each probe, multiple tests were run with varying pulse voltages. In addition, different sizes of probes

were used to adjust the intensity of the fields injected. The E-field probe does not have an orientation;

we positioned it across the USB port or over the host controller IC. E-field interference was injected

using an EZ-3 probe at voltages between 500 and 5500 volts with a pulse width between 0.1 and 0.25

seconds. Because the magnetic fields generated by the H-field probe are directional, we conducted

tests with the probe in parallel with and perpendicular to the data and control lines. We used two

probes, the HX-5 and the HX-1T2, injecting ESD betweeen 500 and 8000 volts with pulse widths

between 0.1 and 0.6 seconds. The system was more resilient to H-field interference, allowing us to

perform H-field tests with more intense ESD conditions than were possible with E-field tests.

4.1.2. EMI Experiment Design. For our experiments, we selected the well-documented

and affordable Rock Pro 64 system which uses a Rockchip RK3399 System-on-Chip that has built-in

USB 3.0 and 2.0 host controllers. We focus on the USB 2.0 host controller, which conforms to

the EHCI specification [54]. This specification details both the physical power and communication

requirements for the host controller and the contents of the host controller’s registers. We installed

a Linux operating system on this device running version 4.4.202-1237-rockchip-ayufan of the

Linux kernel. The kernel contains a driver — a software program — that configures and manages

communication with the host controller.

When performing experiments, we need to generate traffic on the USB bus to stimulate host

controller operation and, consequently, the creation of register snapshots by our instrumentation. To

keep test conditions consistent, we connect only one USB flash drive to the system and copy the same

23

file to it in each test. This produces constant traffic to the USB host controller for the duration of

one EMI injection. To speed up the rate at which experiments were performed, we developed a script

which automated this task as well as the task of saving the log of snapshots after an experiment.

Two types of experiments were performed, termed baseline and EMI-exposed. For both tests,

our instrumented driver was used and USB traffic was generated as described above. The baseline

tests allow us to capture the typical operation of the host controller and are performed with the

device, consisting of the computer and flash drive, sitting on a bench. Our assumption is that any

interference arising from these conditions is typical of what the device should withstand under normal

operation and thus not meaningful to distinguish from truly interference-free operation.

EMI-exposed tests are conducted with the device placed between the plates of the EMI

generator described in [57]. This generator repeatedly produces a 30 MHz damped sinusoidal electric

field wave which interferes with the device operation. Tests were carried out to characterize the limits

of what the device can withstand without resetting the host computer or causing permanent harm to

the device — conditions under which any software instrumentation will struggle to accurately capture

system operation. Tests are carried out with the device placed both vertically and horizontally in the

generator, as orientation can affect how the EMI enters the device.

4.2. EXPERIMENTAL DATA

This section describes the datasets gathered from our experiments and discusses details of

processing the recorded data for analysis and classification.

4.2.1. Collected ESD Experiment Data. The log files generated by the instrumented

driver consist of lines each having a timestamp, register name, and associated register value. We

parse these lines into n-tuples containing snapshots of register values at the time of each function

call. The sequence of n-tuples from each log constitutes an execution trace.

Many of these execution traces revisit the same states repeatedly. By identifying these

repeated states and coalescing them, we can develop an execution graph. This graph is a directed

graph where each node is a unique system state and an edge from node s to node t indicates that

the system went from state s to state t in the corresponding execution trace. An execution trace

then becomes a path through the execution graph.

Once execution graphs for each log have been created, we repeat the deduplication process to

produce the unified execution graph of all runs. This allows us to identify similarities and differences

among system execution traces.

24

The operation of the analysis code can be summarized as follows:

1. Parse the log files to create states based on the registers’ values.

2. Deduplicate these execution traces to derive a per-run execution graph.

3. Deduplicate the execution graphs of different runs to derive a universal execution graph.

4. Using this execution graph and each execution trace, perform statistical analysis on the data

to ascertain whether our instrumentation can capture differences in operation correlated with

ESD.

4.2.1.1. Constructing execution graphs. The first stage of analysis parses register

values from the log file for each run. After creating tuples for each of the states in that file, we

deduplicate the sequence of states to create the nodes of the execution graph. We then derive the

execution trace path through the execution graph from the state sequence. We also record the

number of times each transition is taken.

4.2.1.2. Constructing the unified execution graph. The next analysis step combines

the data from each log into a unified execution graph. The process is similar to that used to develop

the execution graph for each log. Certain registers for the host controller contain memory addresses

that change every time the driver is reloaded.1 The values of these registers are not significant to our

analysis; however, changes in the values are significant as they indicate changes in host controller

execution. Therefore, we create a new globally unique state each time the value changes within a

trace.

4.2.1.3. Graph analysis. We divide the data collected from test runs into two groups:

baseline and ESD-exposed. Baseline traces are traces of the system operating normally; they provide

us with the system’s expected state machine ESD-exposed traces document how the system transitions

into and out of unexpected operation due to ESD exposure.

After we create the graph of globally unique states, we analyze the baseline and ESD-exposed

traces individually to observe how system operation differs among them. We subtract the set of

states reached in baseline traces from the set of states reached in ESD-exposed traces to get a list of

states only reached during ESD injection. These state sets can be used to show where and when

the system transitioned into a state that can potentially be attributed to ESD. Similarly, we can

determine which transitions between states are present only during ESD exposure.
1These registers are HcPeriodCurrentED, HcBulkCurrentED, HcFmRemaining, HcHCCA, HcControlHeadED,

HcControlCurrentED, HcBulkHeadED, HcFmNumber, and HcDoneHead.

25

Table 4.1. Summary of data collected from experiments

Dataset Experiments Traces Collected

Baseline 24 24
Experiment 1 25 17
Experiment 2 42 30

4.2.2. Collected EMI Experiment Data. EMI-exposed experiments were carried out

on two separate dates. Along with each log of register snapshots, we saved the transferred file as

written to the USB drive. None of these files exhibit corruption, so further analysis of that data is

not merited. In addition, we recorded the associated field strength and device orientation.

The data gathered from the experiments is summarized in Table 4.1. We gathered a total of

24 baseline sequences and a total of 47 EMI-exposed sequences from our experiments. Note that the

number of sequences collected may be less than the number of experiments due to data loss caused

by hardware crashes. Furthermore, sequences vary in length due to changes in system operation such

as crashes, USB device disconnects, and data frame retransmissions.

We interpret these logs of register snapshots as sequences of host controller operation states.

States and snapshots correspond one to one; each state is defined by the register values in its

corresponding snapshots. We treat two states as equal when their register values are all equal,

excluding the values of some registers which are set only by the host controller driver and thus do

not reflect host controller operation.2

We define the state space to be S = {s1, · · · , s19} where each si corresponds to a specific

unique state observed in our data. See Table 4.2 for the complete listing of the state space.

2The registers we exclude are frame_index, segment, frame_list, and async_next.

26

Table 4.2. State space and register values from corresponding snapshot for EMI experiment

Registers

State Command Config’d
Flag

Interrupt
Enable Status TX Fill

Tuning Mode Mode
Extended

s1 0x10005 0x1 0x37 0x0000 0x0 0x10005 0x10005
s2 0x10005 0x1 0x37 0x0008 0x0 0x10005 0x10005
s3 0x10025 0x1 0x37 0x8000 0x0 0x10025 0x10025
s4 0x10025 0x1 0x37 0x8001 0x0 0x10025 0x10025
s5 0x10025 0x1 0x37 0x8008 0x0 0x10025 0x10025
s6 0x10025 0x1 0x37 0x8009 0x0 0x10025 0x10025
s7 0x10025 0x1 0x37 0x8020 0x0 0x10025 0x10025
s8 0x10025 0x1 0x37 0x8021 0x0 0x10025 0x10025
s9 0x10025 0x1 0x37 0x8028 0x0 0x10025 0x10025
s10 0x10025 0x1 0x37 0xA000 0x0 0x10025 0x10025
s11 0x10025 0x1 0x37 0xA001 0x0 0x10025 0x10025
s12 0x10025 0x1 0x37 0xA008 0x0 0x10025 0x10025
s13 0x10025 0x1 0x37 0xA009 0x0 0x10025 0x10025
s14 0x10025 0x1 0x37 0xA020 0x0 0x10025 0x10025
s15 0x10025 0x1 0x37 0xA021 0x0 0x10025 0x10025
s16 0x10065 0x1 0x37 0x8000 0x0 0x10025 0x10025
s17 0x10065 0x1 0x37 0x8000 0x0 0x10065 0x10065
s18 0x10065 0x1 0x37 0xA000 0x0 0x10025 0x10025
s19 0x10065 0x1 0x37 0xA020 0x0 0x10025 0x10025

27

5. STATISTICAL ANALYSIS OF PERIPHERAL OPERATION

The experiments described in Section 4 produce a collection of “baseline” sequences, and a

collection of “EMD-exposed” sequences of register snapshots. The goal of our statistical analysis is to

answer two key questions:

1. Is our instrumentation capable of detecting changes in system operation correlated with exposure

to EMD?

2. What are the characteristics of baseline and EMD-exposed operation?

Formally, the state space S = {s1, s2, · · · , sm} consists of distinct snapshots of register values

si. The number of states and the values of the registers in each state are determined empirically from

the experimental data. While the number of possible states (every combination of every possible value

of every register) can be quite large, in practice most of them are unreachable. Thus, for the peripherals

we have studied so far, we have not encountered issues with state space explosion. We can describe

the jth sequence (x1, x2, · · · , xnj) as a series of nj states taken from a state space S. The set of these

sequences D can be partitioned into two sets, the baseline data DB = {(xt, 1 ≤ t ≤ nj) | 1 ≤ j ≤ NB}

and the EMD-exposed data DE = {(xt, 1 ≤ t ≤ nj) | NB + 1 ≤ j ≤ NB +NE}.

The first modeling perspective, alluded to in the previous section, is to view these sequences

of snapshots as paths taken through an execution graph. In this graph, nodes correspond to states

si, and an edge exists between two states si and sk if there exists a sequence in D which has as a

sub-sequence (si, sk). We can also speak of the “baseline execution graph” or the “EMD-exposed

execution graph” where the transitions are determined only by the sequences in DB or DE , respectively.

Baseline and EMD-exposed operation can be differentiated by comparing the reachable nodes and

allowed transitions in each graph.

The second modeling perspective interprets these sequences as categorical time series of

observations taken from a stochastic process {Xt} ∈ S. The sequences are categorical because the

states in S are discrete and unordered, meaning one cannot be ranked greater than or less than

another. We assume that the data in DB is generated by one process and the data in DE by another.

No further assumptions about independence or identicality of distribution are made. The data from

each stochastic process can be analyzed to determine the difference between the two stochastic

processes: one corresponding to baseline peripheral operation, the other to EMD-exposed operation.

28

Table 5.1. Probability distribution of register values: HcInterruptEnable and HcInterruptDisable

Value Baseline
Probability

ESD-Exposed Probability

Enable Disable Difference

0x8000005E 0.222 89 0.200 41 0.200 41 0
0x8000001A 0.013 50 0.096 77 0.096 66 0.000 11
0x8000005A 0.761 56 0.659 32 0.659 43 −0.000 11
0x8000001E 0.002 02 0.043 59 0.043 59 0

These perspectives are complementary: one focuses more on the nature of the software

producing the traces, while the other focuses on the stochastic nature of the physical events which may

alter the operation of the software. This section presents multiple techniques from both perspectives

and applies them to the collected data to demonstrate that our instrumentation approach is effective.

5.1. ANALYSIS OF DATA FROM ESD INSTRUMENTATION

We investigate several aspects of our ESD dataset. First, we compare the probability

distribution of several registers’ values, revealing changes due to ESD. Second, the execution graphs

of the data are compared and several indicators of anomalous execution are found. Finally, the effect

of pulse voltage on anomalous execution is investigated.

5.1.1. Registers of Interest. Certain registers on the host controller can were observed to

give indications of ESD. In particular, we consider the values of the registers for interrupt enabling and

disabling (HcInterruptEnable and HcInterruptDisable), interrupt status (HcInterruptStatus),

control (HcControl), and port status (HcRhPortStatus0). The host controller has multiple events

and errors it can generate hardware interrupts for; the driver can enable and disable them depending

on the current operation and check whether they have been triggered via the interrupt enable, disable,

and status registers. The control register allows the driver to switch between various USB transfer

modes and enable certain host controller features. The port status register reports whether a port is

enabled, what device is connected to a port, device power configuration, etc.

Per the OHCI specification [56], HcInterruptEnable and HcInterruptDisable should be

duplicates of each other when read. However, as shown in Table 5.1, there are a few states in the

ESD-exposed data where they are not duplicates. This may indicate ESD-induced bit flips or the

system failing to properly update both registers when one is changed.

29

0x04

0x06

0x44*

0x46*

0x20†

0x24†

0x26†

0x60†*

0x64†*

0x66†*

1E-5 1E-4 1E-3 1E-2 1E-1 1E+0

Value Probability

00.010.020.030.040.05

Change in Probability
Baseline

ESD-exposedValues

(a) HcInterruptStatus: † indicates frame counter overflow; * indicates status change

0x83

0x93

0xa3

1E-3 1E-2 1E-1 1E+0

Value Probability
00.020.040.060.080.10.120.14

Change in Probability
Baseline

ESD-exposedValues

(b) HcControl

0x000100⋄
0x000101⋄
0x000103⋄
0x000111*

0x000113*

0x010100

0x010101

0x020101

0x030100

0x030101

0x100103

0x020103†

0x020111†*

0x020113†*

0x120101†

00.020.040.060.080.1

Change in Probability

1E-5 1E-4 1E-3 1E-2 1E-1 1E+0

Value Probability
Baseline

ESD-exposed
Values

(c) HcRhPortStatus0: ⋄ indicates device connected with no change in port status; † indicates port en-
abled/disabled; * indicates port reset

Figure 5.1. Probability distributions of register values

30

The HcInterruptStatus register values observed are shown in Figure 5.1a along with the

probability of those values appearing in baseline and ESD-exposed traces and the absolute change in

that probability due to ESD exposure. It shows a dramatic increase in values where the frame number

counter overflowed (marked †) in the ESD-exposed traces, indicating that the system transmits many

more frames during ESD exposure. In addition, values indicating the hub’s status has changed

(marked *) are also much more prevalent in ESD-exposed traces.

The HcControl register values provide a different perspective on the increase in the number

of frames and hub status changes. Figure 5.1b shows a great increase in control frame processing

(0x93) and a corresponding decrease in bulk data frame processing (0xa3). It is possible that ESD

glitches are disrupting bus operation, requiring the host controller and device to send a greater

number of status change frames. In addition, corruption in the bulk data frames would require

retransmissions and therefore increase the number of new control and data frames (0x83).

The HcRhPortStatus0 register contains status information about the port the USB drive

was plugged into during testing. Figure 5.1c shows a marked decrease in states where the port

status remains unchanged (marked ⋄ in Figure 5.1c) and an increase in states indicating the port

has been enabled or disabled (†). As well, port resets (*) were only observed in ESD-exposed traces.

The prevalence of resets and toggling whether the port is enabled hint that the host controller is

experiencing unexpected errors and attempting to recover by resetting the port’s status. The presence

of a port reset where the driver or host controller would not usually issue one is a particularly strong

indicator of ESD exposure.

5.1.2. Execution Graphs. Manual examination of execution graphs showed several po-

tential effects of ESD on the system state. Figure 5.2 shows an execution graph of sample baseline

and ESD-exposed execution traces. The set of nodes and solid arcs on the left of the figure is the

execution graph of the baseline traces. The right of the figure consists of the additional states and

transitions present in the sample ESD-exposed traces. Green states and solid edges indicate states

and transitions present in the baseline traces. Red states and dashed edges indicate states and

transitions appearing only in ESD-exposed traces. In addition to observing states in ESD-exposed

traces that are not present in baseline traces, we observed four kinds of anomalous transitions:

1 Transitions from baseline to non-baseline states,

2 Transitions between non-baseline states,

3 Transitions between baseline states that are not observed in baseline traces, and

4 Transitions from non-baseline to baseline states.

31

b0 baseline start

b1

b2

b3

b4

b5

b6

b7

b8

b9

b10b11

b26 ESD-exposed start

e0

b20

b21

b12

b19

b24

b25

b18

b23

e1

e2

e3

e4

e5

e6

b35

b36

e7

e8

e9

e10

e11

b37

1

2

3

4

bn bn: nth state present in baseline logs
en en: nth state present only in ESD-exposed logs

transition present in baseline logs
transition present only in ESD-exposed logs

Figure 5.2. Execution graph of one baseline trace and one ESD-exposed execution trace

Consider how we should expect the system to behave under normal conditions and under

ESD exposure. Normally, it should have a small number of common code paths and some edge case

handling. Under ESD exposure, we should see a number of anomalous states caused by various

32

0 20 40 60 80 100 120 140 160
States (in order of decreasing occurrences)

0.0

0.5

1.0

1.5

2.0

A
v
e
ra
g
e
 o
cc
u
rr
e
n
ce
s
p
e
r
lo
g States from baseline logs

States from ESD-exposed logs

Figure 5.3. Average state occurrences per log

register bits being flipped as well as control flow anomalies. Figure 5.3 shows the average number of

occurrences of states per baseline and ESD-exposed traces. The baseline traces show a few states

that are very common and a small tail of less common states. There are far more unique states in

ESD-exposed traces, and they are far less likely to occur. (We have omitted half of the ESD-exposed

state tail to make the interesting portion of the graph more legible.) This graph provides quick

verification of our methodology; we can see that the data we have collected reflects expected system

operation.

5.1.3. TLP pulse voltage. Figure 5.4 compares the TLP pulse voltage with the percentage

of transitions to or from states not in the baseline traces. The lack of a clear relationship between

observed ESD coupling and pulse voltage indicates that there are confounding factors between ESD

exposure and system operation. These factors may include field type and orientation, injection

location, pulse frequency, and the operation being performed by the host controller at the time of

injection. In addition, the ESD injection may cause the system to crash almost instantaneously, in

which case the resulting state trace will have relatively few states caused by ESD. More work is

needed to assess the effect each of these factors has on system operation.

5.2. ANALYSIS OF DATA FROM EMI EXPERIMENTS

Our experimental process produces sequences of states; we analyze these sequences to

determine whether the sequences from baseline experiments differ from those produced by EMI-

exposed experiments. We can model these data as categorical discrete time series: sequences

33

Figure 5.4. Relationship between pulse voltage and ESD-caused transitions

of observations of states from S over time. These states are discrete, rather than continuous,

and unordered, meaning one cannot be ranked less than another. The events where we take our

observations are the interrupts from the host controller; the times between events are stochastically

distributed. While the space of possible register values is quite large, most of the possible states do

not arise in practice: our data contain 19 distinct states. Further analysis is required to determine

whether all registers are critical to determining the presence of EMI or if it is possible to reduce the

state space further.

Formally, the jth time series contains nj observations (x1, · · · , xnj) from a stochastic process

{Xt} ∈ S. The number of observations nj can be modeled as an observation from a random

variable N determining the sampling time of each sequence. We have two datasets: baseline data

DB = {(xt, 1 ≤ t ≤ nj) | 1 ≤ j ≤ 24} and EMI-exposed data DE = {(xt, 1 ≤ t ≤ nj) | 25 ≤ j ≤ 72}.

Our assumption is that the sequences in DB are generated from one stochastic process and the

sequences in DE are generated from another. We make no further assumptions about independence

or identicality of distribution.

In summary, this section demonstrates that our instrumentation is capable of detecting

changes in device operation when exposed to EMI. To do so, we characterize the time series in

DB and DE using categorical time series equivalents of variance and autocorrelation. Significant

differences in these measures indicate that our instrumentation is effective.

34

5.2.1. Variance & Dispersion. One question we might ask of a dataset is, “how much

variation does it have?” For real-valued data, the variation in a dataset is quantified by variance;

however, this measure is derived from the mean, which is not defined for categorical data. Instead,

we measure dispersion: a widely disperse distribution is close to a uniform distribution, whereas a

minimally disperse distribution is close to a one-point distribution. The more disperse a distribution

is, the more uncertain we are about the outcome of observing the random variable.

Several dispersion measures have been proposed; we choose two measures which are suitable

for our particular datasets. One measure is the Gini index [58, §6.2.1], defined as

νG =
d+ 1

d

1−
∑
j∈S

π2
j

 , (5.1)

where d+ 1 is the number of categories (in our case, 19), S is the set of categories (in our case, the

set of host controller states as defined in Section 4.2.2), and πj is the probability of observing the

jth category. The value of the Gini index falls in the range [0; 1], with 0 indicating a one-point,

minimally disperse distribution and 1 indicating a uniform, maximally disperse distribution.

The other measure we have chosen is the extropy [59] of a distribution, defined as

νEx =
−1

d ln
(
d+1
d

) ∑
j∈S

(1− πj) ln(1− πj). (5.2)

Extropy shares the same range and behavior as the Gini index: higher extropy means a more disperse

distribution. Extropy is the complementary dual of information theory’s entropy ; we select it over

entropy due to domain restrictions of their corresponding signed serial dependence measures as

explained in Section 5.2.2.2.

Dispersion measures for each time series are aggregated using box plots in Figure 5.5. Both

measures qualitatively agree: the baseline time series are less disperse than all but a few of the

EMI-exposed time series. In the Experiment 2 dataset, where most interference was near the limit of

what the system could withstand, all time series are more disperse than baseline time series.

5.2.2. Autocorrelation & Serial Dependence. In addition to variance, we can charac-

terise time series data by how repetitive it is. Conceptually, this is determined by how similar the

time series is to a copy of itself shifted back by one or more time steps (called lag). For real-valued

time series, this measure is called autocorrelation; however, it depends on expected values, which are

not defined for categorical data.

35

Figure 5.5. Gini and Extropy dispersion measures for each dataset as well as for all EMI-exposed
time series (“Exposed”)

The corresponding categorical time series property is known as serial dependence. Serial

dependence comes in two variants: signed and unsigned. These measure various properties of the

conditional lagged bivariate probabilities pi|j(k) = P (Xt = i | Xt−k = j). Here, i and j are categories

in S and k is the lag. pi|j(k) is the probability of observing i at time t given that j was observed at

time t− k. Further information on computing pi|j(k) can be found in [58, § 6.3].

• Serial Independence occurs when observing j at t − k gives no insight into what might be

observed at t. Equivalently, pi|j(k) = πi for any i, j ∈ S.

• Unsigned Serial Dependence occurs when observing j at t− k gives perfect insight into what is

observed at t. Equivalently, for any j, we can find an i where pi|j(k) = 1.

• Positive Serial Dependence occurs when observing i at t − k means we observe i again at t.

Equivalently, for any i, pi|i(k) = 1.

• Negative Serial Dependence occurs when observing i at t− k means we will not observe i at t.

Equivalently, for any i, pi|i(k) = 0.

5.2.2.1. Unsigned serial dependence. As a measure of unsigned serial dependence, we

use Cramer’s v, defined by

v(k) =

√√√√1

d

∑
i,j∈S

(pij(k)− πiπj)2

πiπj
, (5.3)

36

(a) Baseline data (b) EMI-exposed data

Figure 5.6. Cramer’s v measures for lags 1–15, 20–24, and 31–35

where k is the lag and pij(k) = P (Xt = i,Xt−k = j) is the lagged bivariate probability ; that is, the

probability of observing i at time t and observing j at time t−k. This relates to the conditional lagged

bivariate probability mentioned above: pi|j(k) =
pij(k)
πj

. v(k) has range [0; 1], with 0 corresponding

to serial independence and 1 corresponding to unsigned serial dependence. The larger v(k) of a time

series is, the more accurately we can predict future values of that time series.

A convenient property of Cramer’s v is that it follows a χ2 distribution when it is estimated

by sampling an independent and identically distributed (i.i.d.) process. A process where every

observation is independent and identically distributed is the epitome of serial independence! Thus,

we can use a χ2 significance test to determine whether an estimate for v for a particular time series

is statistically significant. The exact test performed is

v(k) >

√
1

Td
χ2
d2;1−α (5.4)

where T is the number of observations in the time series and χ2
d2;1−α is the inverse χ2 CDF with

d2 degrees of freedom evaluated at 1− α. When this condition holds, we reject the null hypothesis

that our data is not serially dependent. Since we are testing unsigned serial dependence, this is a

one-tailed test.

We compute Cramer’s v for our four datasets at lags 1–15, 20–24, and 31–35. Initially, we

used lags 1–15, which revealed a peak at lag 11. Thus, we extended the analysis to cover lags around

22 and 33, which revealed peaks at lags which are multiples of 11 as well. Figure 5.6 shows box plots

for the baseline and combined EMI-exposed datasets. They show slightly more serial dependence in

37

the EMI-exposed data than what is observed in the baseline data. The baseline data has a small peak

at lag 11, while the EMI-exposed data has more distinct peaks at lags 11, 22, and 33. Unfortunately,

serial dependence at all lags across both datasets fails to achieve statistical significance, though 27%

of traces in the EMI-exposed data achieve significance at lags 11, 22, and 33.

5.2.2.2. Signed serial dependence. We select two measures of signed serial dependence

that relate to our chosen dispersion measures. The first measure, Cohen’s κ [58, §6.3] is defined by

κ(k) =

∑
j∈S

(
pjj(k)− π2

j

)
1−

∑
j∈S π2

j

. (5.5)

Values of κ(k) fall in the range
[
−

∑
j∈S π2

j

1−
∑

j∈S π2
j
; 1

]
, with 0 corresponding to serial independence, positive

values corresponding to positive serial dependence, and negative values corresponding to negative

serial dependence. Note that the denominator of the lower bound for κ(k) scales negatively with

the Gini index of the marginal distribution π of the dataset. Thus, κ(k) is undefined when π is a

one-point distribution. In the i.i.d. case, that is, when a sequence is serially independent, Cohen’s κ

follows a normal distribution.

The second measure of serial dependence we selected is a modified version of κ(k). This

measure, κ⋆(k) [60] is defined by

κ⋆(k) =
∑
j∈S

pjj(k)− π2
j

1− πj
. (5.6)

Values of κ⋆(k) fall in the range
[
−
∑

j∈S
π2
j

1−πj
; 1
]
, with positive values corresponding to positive

serial dependence and vice versa. κ⋆(k) is undefined in the case that π is a one-point distribution.

More disperse datasets also have a wider range of κ⋆(k) values. In the i.i.d. case, as with Cohen’s κ,

κ⋆ follows a normal distribution.

These measures, κ and κ⋆, relate to our dispersion measures νG and νEx respectively by

appearing as terms in measures of their bias [60]. The measure of serial dependence κ∗ which is

associated with entropy is undefined in the case that πj = 0 for any state j, making it an undesirable

statistic for our datasets. Hence, we choose extropy and κ⋆ over entropy and κ∗ as measures of

variance and serial dependence.

We compute Cohen’s κ and κ⋆ for lags 1–15 and additionally 20–24 and 31–35 to confirm

recurring serial dependence at lags that are multiples of 11. Box plots and critical values for the

baseline and EMI-exposed datasets are shown in Figures 5.7a, 5.7b, 5.7c, and 5.7d. Our discussion

focuses on dependence exhibited by both measures.

38

(a) Cohen’s κ for baseline data

(b) Cohen’s κ for EMI-exposed data

(c) Modified κ⋆ for baseline data

(d) Modified κ⋆ for EMI-exposed data

Figure 5.7. Signed serial dependence measures for lags 1–15, 20–24, and 31–35

The baseline data measures (figures 5.7a and 5.7c) reveal some significant positive serial

dependence at small lags, notably lags 3, 6, 9, 11, and 12. Small, but still significant, negative

serial dependence is observed in the Cohen’s κ values at lags 4, 5, and 7; however, many of the

corresponding values for κ⋆ are not significant. Above lag 12, serial dependence rapidly vanishes

in the baseline dataset aside from mild positive dependence lag 21. In the EMI-exposed data, the

only significant positive serial dependence is at lags 11, 22, and 33; in addition, some sequences

have positive serial dependence at lag 34. Both Cohen’s κ and κ⋆ show significant negative serial

dependence at lags 4, 5, and 7. In addition, significant negative serial dependence is observed at lag

15.

These results are summarized in Table 5.2. The entries marked ‘?’ deserve additional

commentary: at lag 6, most EMI-exposed sequences have negative serial dependence, but one or two

have positive serial dependence. This may indicate that the EMI-exposed data is multimodal, with

some sequences exhibiting one mode of operation and others another, or it may indicate that certain

sequences do not exhibit interference. From the entries marked ‘+’, we can see that the chosen serial

39

Table 5.2. Percent of sequences where serial dependence is significant (α = 0.05) at a given lag.
Entries marked ‘*’, ‘+’, or ‘?’ have at least 50% of sequences showing significant dependence; entries
marked ‘+’ exhibit the same result for both measures; entries marked ‘?’ have at least one sequences
showing significant dependence of the opposite sign as well.

Cohen’s κ Modified κ⋆

Baseline EMI-exposed Baseline EMI-exposed

Lag % +ve % −ve % +ve % −ve % +ve % −ve % +ve % −ve

1 33.3 0.0 95.6* 0.0 0.0 0.0 42.2 0.0
2 0.0 41.7 2.2 0.0 0.0 0.0 0.0 0.0
3 100.0+ 0.0 13.3 4.4 100.0+ 0.0 6.7 2.2
4 0.0 100.0+ 0.0 100.0+ 0.0 83.3+ 0.0 97.8+
5 0.0 100.0+ 0.0 100.0+ 0.0 79.2+ 0.0 93.3+

6 100.0+ 0.0 4.4 91.1? 91.7+ 0.0 2.2 82.2?
7 0.0 100.0+ 0.0 100.0+ 0.0 66.7+ 0.0 97.8+
8 0.0 12.5 0.0 8.9 0.0 0.0 0.0 2.2
9 100.0+ 0.0 13.3 0.0 95.8+ 0.0 6.7 0.0

10 0.0 4.2 73.3* 0.0 0.0 0.0 33.3 0.0

11 100.0+ 0.0 100.0+ 0.0 100.0+ 0.0 100.0+ 0.0
12 100.0+ 0.0 97.8* 0.0 100.0+ 0.0 48.9 0.0
13 0.0 87.5* 2.2 0.0 0.0 0.0 0.0 0.0
14 20.8 0.0 6.7 2.2 0.0 0.0 0.0 2.2
15 62.5* 0.0 0.0 93.3+ 16.7 0.0 0.0 82.2+

20 37.5 0.0 6.7 0.0 0.0 0.0 0.0 0.0
21 83.3+ 0.0 82.2* 0.0 50.0+ 0.0 35.6 0.0
22 83.3* 0.0 100.0+ 0.0 37.5 0.0 100.0+ 0.0
23 20.8 0.0 95.6* 0.0 0.0 0.0 46.7 0.0
24 33.3 0.0 4.4 0.0 0.0 0.0 0.0 0.0

31 12.5 4.2 2.2 2.2 4.2 0.0 0.0 0.0
32 0.0 16.7 77.8* 2.2 0.0 0.0 37.8 0.0
33 41.7 8.3 100.0+ 0.0 20.8 0.0 97.8+ 0.0
34 8.3 33.3 91.1+ 0.0 0.0 0.0 51.1+ 0.0
35 0.0 54.2 13.3 0.0 0.0 0.0 0.0 0.0

dependence measures agree more frequently on the baseline dataset than on the EMI-exposed dataset.

The modified κ⋆ measure universally reports serial dependence less or equally frequently compared

to Cohen’s κ, as shown by the ‘*’ entries.

At a minimum, we can say that there are discernible differences between the baseline and

EMI-exposed datasets. Since the magnitudes of the serial dependences do not decrease monotonically,

we can conclude the underlying stochastic processes do not have the Markov property. More analysis

of the underlying data is necessary before a complete explanation of these differences can be offered.

We hypothesize that during “normal” operation, the host controller’s operation is characterized by 3

state and 11 state loops, which appear as significant serial dependence at lags which are multiples of 3

40

and 11. When exposed to EMI, however, the 11-step processes become dominant; perhaps this is due

to built-in fault-recovery methods or due to some unforeseen interaction between the experimental

setup and the host controller’s operation. The negative serial dependences are less dramatic and are

likely a side effect of the 3 and 11 state loops.

41

6. CLASSIFICATION OF PERIPHERAL OPERATION

Having determined that the injection of EMD causes observable differences in the traces

collected by our instrumentation, we study whether these differences can be used as indicators of

EMD. The ultimate goals of this investigation are threefold:

1. Identifying sequences of states from execution traces for further root-cause analysis.

2. Detecting anomalous operation in real time on devices in the field.

3. Recovering from interference with minimal interruptions to system operation.

In this section, we present work that lays a foundation for addressing these questions.

Specifically, we study whether the differences in operation correlated with EMD can be used to infer

whether EMD was present during all or part of a trace. This is a classification problem with two

labels, “baseline” and “EMD-exposed”.

Our approach should meet two criteria:

1. Sufficient granularity to identify anomalous sub-sequences

2. Ability to produce results from a stream of data, not just finite-length sequences

For the ESD dataset, we create a bespoke classification approach which can be applied to

whole sequences or sub-sequences thereof. We train and test it on full sequences from the ESD

experimental data. The promising results from this preliminary work leads us to pursue a more

rigorous classification approach for the EMI dataset.

With the EMI data, we study classifiers which produce a stream of classification results,

as well as sliding-window classifiers; classifiers from both categories meet the second criteria above.

We propose a method to synthesize sequences of states which contain both known-baseline and

known-EMI-exposed subsequences. This allows us to train and validate the classifiers on data that

is more representative of what a real-time EMI monitor would produce. Our classifier evaluation

process is more detailed, encompassing multiple metrics and assessing statistical significance.

42

6.1. DETECTING ESD EVENTS

We present a preliminary classifier for the host controller state data. While the approach

here is limited to offline training and classification, it has been designed with the ability to be easily

converted to real-time operation. As such, the classification process is computationally inexpensive

in order to reduce overhead on an embedded system.

The classifier takes an execution trace as input and produces a label, either normal or

ESD-exposed, and a confidence level associated with the label. This label is computed based on the

similarity between states and transitions in the input trace and the training data. The classifier has

a concept of confidence that describes the likelihood that the classifier label is correct. Confidence

is quantified as a value between 0 and 1, with 0 representing no ability to discern a label and 1

representing complete confidence in the result.

6.1.1. Training. In order to deduce when the system is exposed to ESD based on our

data, we must consider three classes of states: states appearing only in baseline traces, states only

appearing in ESD-exposed traces, and states appearing in both. Our underlying assumption is

that states only in baseline traces indicate normal operation and states only in ESD-exposed traces

indicate ESD exposure. States appearing in both provide less information about whether the system

is operating as intended or experiencing ESD interference.

We use baseline traces to provide an approximation of normal operation and ESD-exposed

traces to approximate ESD-exposed operation. This approach assumes that ESD-exposed traces are

exposed to ESD throughout the duration of the trace. We also suppose that any departure from

normal operation can be attributed to ESD. This assumption holds for our training and evaluation

data, although the classifier could be expanded to differentiate among various kinds of interference if

this assumption were to not hold.

The value of confidence is calculated by assigning each system state a weight. We are able to

combine label and confidence computations by representing weights as numbers in the range [−1, 1]

where positive weights correspond to a label of ‘ESD-exposed’ and a negative weight corresponds to

a label of ‘normal’. The confidence in the label is the absolute value of the weight.

Assignment of weights must compensate for the fact that the training data will contain more

ESD-exposed traces than baseline traces, since we performed more ESD-exposed tests. Thus, we

assign the confidence for each state’s label proportionately, based on the probability of that state

appearing in baseline and ESD-exposed traces. The normalized weight, wi, for a unique state i is

43

defined as:

wi =

− bi
NB

+
ei
NE∣∣∣∣ bi

NB

∣∣∣∣+ ∣∣∣∣ ei
NE

∣∣∣∣ if bi > 0 or ei > 0

0 otherwise

(6.1)

where NB and NE are the total number of states in all baseline and ESD-exposed execution traces,

respectively, and bi and ei are the number of times state i appears in baseline and ESD-exposed

execution traces. The case where bi = ei = 0 occurs when assigning a weight to a state not present in

the training data. In that case, the state provides no information about whether or not the system is

experiencing ESD.

6.1.2. Classification. We use these weights to build a classifier for the traces we have

collected. The classifier operates on the entirety of an execution trace after it has been recorded.

This classification approach could be easily adapted to a look at a fixed ‘window’ of states for

real-time classification. An ESD event would then appear as an increasingly positive confidence that

the system is ESD-exposed. Recovery from such an event would appear as a decrease in confidence

that the system is ESD-exposed and an increase in confidence that it is operating normally.

The weights can be used to classify a trace as follows: An execution trace, T , is a sequence

of system states. The trace’s classification, CT , is computed by

CT =
1

|T |
∑
i∈T

wi (6.2)

If CT is positive, we classify the trace as having experienced ESD, and if it is negative or

zero, we classify it as having not experienced ESD.

Classifier support can be measured by the percentage of states for which weights are nonzero.

This measures the proportion of the input trace considered when choosing a label. We define accuracy

as the percentage of correct classifications.

We tested this procedure over 22 base traces and 113 ESD-exposed traces. The classifier had

68.5% average accuracy and 84.6% average support with k-fold cross-validation where k = 10.

6.1.3. System State Transitions. We hypothesize that the operation of the host controller

is not Markovian; that is, knowing how the system reached the current state may allow us to predict

the states to which it can transition with higher accuracy. For example, a frame counter overflow

may occur during either data frame or control frame transmission. However, the states leading up to

and following an overflow while transmitting a data frame will be different from those surrounding

44

Table 6.1. Average classifier performance for various n state trajectories

n Accuracy Accuracy with δ Support Table Entries Best δ

1 68.5% 88.5% 84.6% 428 0.17
2 85.4% 88.5% 62.5% 1256 0.275
3 84.6% 86.9% 39.7% 2231 0.138
4 86.2% 86.9% 22.7% 3324 0.115
5 87.3% 87.3% 14.2% 4348 0.125
6 87.3% 88.9% 8.3% 5258 0.377

an overflow while transmitting a control frame. In addition, ESD exposure may cause the system to

abnormally transition between two normal states. This effect of ESD is not captured in the above

classifier design.

We can approximately capture this more complex operation model by classifying system

transitions instead of system states. Additionally, we can extend the concept of a transition, which is

a 2-tuple of states, to an ‘n state trajectory’, an n-tuple of states in the order they were executed. In

graph theoretic terms, an n state trajectory is a path of length n− 1 in the execution graph. Weight

assignment, classification, and performance metrics are defined analogously to their counterparts in

the state-based classification approach.

One disadvantage of adding context in this fashion is the increasing likelihood of encountering

an n state trajectory in the validation data that was not present in the training data. Thus, we must

choose a trade off between increasing accuracy and decreasing support. Another disadvantage is

the increased storage overhead for the weight table, which must be able to fit into memory on an

embedded system.

Table 6.1 shows classifier performance for different n state trajectories, again averaged over

k = 10 folds. The n = 1 data is the same as that presented in the previous section.

6.1.4. Delta. During development, we determined that the classifier performed poorly in

part due to underestimating the weights of states indicating ESD exposure. That is, certain states

which appeared in both baseline and ESD-exposed traces were under-represented in ESD-exposed

traces, causing the classifier to underestimate their significance. We introduced an empirically-

determined bias parameter, δ, as a means of adjusting the weight distribution. Values for δ are

selected from the interval [0, 1].

45

0 50 100 150 200 250 300 350 400 450
sorted unique weights

−1.0

−0.5

0.0

0.5

1.0

w
e
ig
h
t
v
a
lu
e

δ=0

δ=0.17

Figure 6.1. Weights with and without δ

Individual state or n state trajectory weights are computed as follows:

wi =

−
(
1 + 1

NB

)
biδ +

(
1 + 1

NE

)
eiδ∣∣∣(1 + 1

NB

)
biδ

∣∣∣+ ∣∣∣(1 + 1
NE

)
eiδ

∣∣∣
if bi > 0

or ei > 0

0 otherwise.

(6.3)

Figure 6.1 shows the change in the distribution of weights without δ and with the optimal δ = 0.17.

Running k = 10-fold cross-validation for several n state trajectories and choosing the optimal

value of δ, the classifier performs as shown in Table 6.1. As we expect, δ has no effect on support, but

it does have an effect on accuracy. It allows us to reduce the amount of context the classifier needs

to perform well (smaller n), allowing us to have a more precise classifier without losing accuracy.

To demonstrate that δ does not cause the model to overfit, Figure 6.2 shows the effect of δ

on the accuracy of the classifier for each fold. The accuracy shown is the accuracy of the classifier

on the data it was trained on. It is essential that we choose a value of δ based only on information

gained from the training data lest we bias the classifier towards the validation data. The vertical

dashed line shows the value of δ that maximizes accuracy across all folds. If δ were causing the

46

Figure 6.2. Effect of δ on accuracy

classifier to overfit to the training data, we would expect to see each fold having a wildly different

optimal δ. However, in this plot, each fold’s accuracy peaks near the same δ value, indicating that

the model does not overfit.

6.2. DETECTING EMI EVENTS

We present our methodology and results for five classification techniques. These classifiers

are applied to several types of events derived from our EMI datasets. In addition, we devise a method

for synthesizing sequences which contain both known-baseline and known-EMI-exposed states for

training purposes.

6.2.1. Classification Events. When developing classifiers for observed system operation,

we can choose to classify sequences of register snapshots, or we can classify sequences of events

derived from these snapshots. One example of such a sequence of derived events is pairs of snapshots

(xi−1, xi), 1 < i ≤ n produced from a window of n snapshots. Such a derived event allows classifiers

which otherwise ignore the order of states in a window to capture some temporal dependences in

the data. We refer to such a pair of states as “lag 1” events; “lag 0” events refer to the sequence of

snapshots xi. This approach can be extended with further “lookback” — a “lag 2” event is the pair

(xi−2, xi). In addition, we can classify over multiple lags: “lag 0 and 1” data contains an event for

every observed state si as well as an event for every observed state pair (xi−1, xi).

47

Since the space of possible events grows exponentially with the number of snapshots used to

derive an event, we do not consider triplets (e.g., (xi−2, xi−1, xi)) of snapshots in this work.

6.2.2. Classification Techniques. The first set of techniques we evaluated produce a

stream of results: a Hidden Markov Model (HMM) and a Recurrent Neural Network (RNN) Long

Short Term Memory (LSTM) classifier. In our HMM classifier, the hidden states correspond to our

classification labels: “Baseline” and “EMI-exposed” and the observed events to events from a trace.

When trained, the HMM learns the expected marginal distribution of the classification events in

each category. Classifying a sequence of events produces the most likely sequence of classification

labels — hidden states — given the observed events. The LSTM approach incorporates a memory of

previous events which is considered when classifying a new event. While it seems a promising fit for

our problem, we lack sufficient training data to achieve passable classification performance.

The second set of techniques, the sliding window classifiers, all classify on the distribution of

events from a window. This choice keeps the input vectors to the classifier small — “lag 0” events

require a 19 element vector — and independent of window size, as well as eliminates any overfitting

from classifiers associating labels with a particular event’s absolute position in the window.

We evaluated four sliding window classification techniques: an Artificial Neural Network

(ANN), a Support Vector Machine (SVM), a Random Forest Classifier (RFC), and a Gradient

Boosted Classifier (GBC). The ANN classifier features two neuron layers: an input layer the size

of the event space and a single neuron sigmoidal output layer. This learns a direct mapping from

the event marginal distribution to a value between 0 and 1, which is then compared against a cutoff

to determine the classification label applied. The SVM classifier partitions the space of possible

event marginal distributions and assigns categories to regions of this space. Random forest classifiers

consist of a “forest” of decision trees; the majority vote of the trees determines the classification

label applied to an input vector. Internal nodes in these trees pick a particular element of the input

vector and compare it to a cutoff to determine which branch of the tree to continue the decision

process along; leaf nodes are classification labels. Gradient boosted classifiers are a variation on

RFCs wherein trees are not trained independently; instead, each tree is selected to minimize the

error of the previous tree.

6.2.3. Training and Evaluation Approach. Training and evaluating a classifier intended

to detect when a system is experiencing interference requires a dataset of sequences with known-

baseline and known-interfered-with subsequences. Recall that our dataset contains either wholly-

baseline or wholly-interfered-with sequences, but none that exhibit both modes of operation in one

48

sequence. We devised an approach to synthesize sequences that are suitable for training and evaluating

the classifiers from this dataset. Sequences from the baseline dataset and from the EMI-exposed

dataset were alternated in either BEBE or BEEB patterns, with B referring to a baseline sequence and

E an EMI-exposed sequence. These synthesized sequences were then sliced into windows, with the

desired label (baseline or EMI-exposed) for the window determined by the label of the majority

of its states. Synthesized sequences could have unbalanced class representation or have balanced

class representation by oversampling short baseline or EMI-exposed sequences until all subsequences

used to synthesize a sequence contained the same number of snapshots. It is critical that balanced

sequences be used only for training and not for classifier evaluation. For each synthetic dataset, 150

sequences were selected at random and 150 windows selected from each sequence for training and

evaluation.

In addition to classifier-specific hyperparameters, we have several dataset-level hyperparame-

ters:

• Synthesis pattern: BEBE or BEEB

• Balanced or unbalanced class representation

• Classification events, or “lags”

• Window length, for sliding-window classifiers

Two scores were selected to evaluate classifier performance: the standard F1 score and

Matthews Correlation Coefficient (MCC). The MCC score is balanced: it takes into account true

and false positives and negatives, and produces informative scores even when class representations

are imbalanced, as they are in our dataset. All classification results are averaged across 5-fold

cross-validation.

6.2.4. Results. Classifier-specific hyperparameter selection is performed using 5-fold cross-

validation; the ideal hyperparameter settings for each classifier are as follows:

ANN Trained for 100 epochs, learning rate of 0.001, Adam optimization with binary cross entropy

loss.

SVM Linear kernel, cost of 10,000.

RFC 100 trees, max tree depth of 12.

GBC 100 trees, max tree depth of 12, learning rate of 0.1.

49

Table 6.2. Events generated from dataset at each lag

Lag Events

0 xi

0,1 xi, (xi−1, xi)
1 (xi−1, xi)
2 (xi−2, xi)
3 (xi−3, xi)
4 (xi−4, xi)

We examine the variation in classifier performance due to our dataset-specific hyperparameters.

Classifiers were trained for Lag 0; Lags 0,1; Lag 1; Lag 2; Lag 3; and Lag 4. Table 6.2 reviews the

events used by the classifier at these lags.

The effect of window size is shown in Figure 6.3a. Note that for Lag 0,1, the window size used

is double what is shown on the axis label. Empirically, doubling events requires double the window size

to achieve equivalent performance to single-lag classifiers; this is an inherent disadvantage to multiple-

lag classifiers. The reduced performance of the Lag 0 classifiers compared to all others indicates that

the sequential relationship of state observations plays some role in accurately identifying IEMI events.

Optimal window size for each classifier is determined by a one-sided Welch’s t-test with α = 0.05. For

the ANN and SVM classifiers, the best window size is 80 states (pANN < 0.01, pSVM = 0.01); the RFC

and GBC classifiers achieve best results with a window size of 60 states (pRFC < 0.01, pGBC < 0.01).

While peaks in the graph may appear somewhat later, the increase in performance is not statistically

significant. Selecting for a smaller window size reduces classifier memory requirements and produces

results more amenable to manual analysis.

Performance across different data synthesis approaches is shown in Figure 6.3b. Again, the

performance increase from including sequence information (Lags > 0) can be seen, except for in the

HMM. HMM performance, on the other hand, seems to be driven mostly by the number of observable

states; fewer observable states leads to better results.

Balancing the class representation in the training dataset does not lead to an improvement

in performance as determined by a two-tailed Welch’s t-test for inequality, p > 0.25. However, we do

observe a difference between BEBE and BEEB data (p < 0.01) for all but the HMM classifier. From

this, we can conclude that the classifiers struggle the most to classify windows containing states from

both B and E datasets. The increase in performance on the BEEB datasets is due to those datasets

having only 2⁄3 of the mixed windows of the BEBE datasets. The HMM is an exception to this trend,

with equivalent (p = 0.99) performance on either dataset.

50

Table 6.3. Best classifier configurations and performance. Best values in each column are marked
with *.

Metrics Hyperparameters

Classifier F1 MCC Accuracy Recall Window Size Lag

ANN 0.77 0.68 0.87 0.83 80 4
SVM 0.78 0.69 0.87 0.85 80 4
RFC 0.86 0.81* 0.92* 0.87 60 3
GBC 0.87* 0.81* 0.92* 0.92* 60 3

HMM 0.73 0.59 0.82 0.73 N/A 1

The MCC and F1 scores agree across all results, indicating good classifier performance on

identifying both baseline and EMI-exposed states.

Best classification results on the unbalanced BEBE dataset are shown in Table 6.3. Of these,

the gradient boosted classifier performed the best on this dataset.

51

(a) Classifier performance by window size on the unbalanced BEBE synthetic dataset

(b) Classifier performance by synthesized dataset with a window size of 100 (200 for Lag 0,1)

Figure 6.3. Comparison of classifier performance

52

7. PART 2: METAMODELING FOR COMPLEX HYBRID SYSTEMS

The goal of this research is to create a basis for sound metamodeling of complex hybrid systems.

To this end, we focus on two metamodeling tasks: refinement/generalization and transformation of

models.

We use abstract interpretation as a basis for defining operations on models and proving that

those operations give meaningful results — that is, results preserve, to the greatest extent possible,

the faithfulness of the inputs. Abstract interpretation is a theory of sound approximation of semantics

originating in the field of program analysis. We apply it here because all of the metamodeling tasks in

question constitute approximation of semantics. Our research provides a common basis for describing

metamodeling operations and enables research on one operation to make use of results from studies

of other operations.

Abstract interpretation of models relies on three key components: i) “entailment” between

systems and properties and between systems and models, ii) modeling formalisms and system

properties being complete lattices, and iii) abstraction and concretization operators defined between

modeling formalisms and system properties. We use system properties to explicitly represent

information about a system; often, these properties are derived from models of the system. The

“entailment” relationship between systems and models and between systems and properties allows

us to establish that, if a model is faithful to a system, then the properties of the model are also

faithful to the system and vice versa. Thus we can show that model faithfulness is preserved by

our metamodeling operations. Lattices provide a tool for describing approximate knowledge of a

system: models and properties are ordered by specificity, giving a way to describe, for instance,

Properties (§9.1.1)

MIS (§9.1.5.2) Topology
Refine
(§9.1.4)

Generalize
(§9.1.3)

γ (§9.1.5.3)

α
(§9.1.5.3)

RefineGeneralize

γ
α

τMIS
Topology (§10)

Figure 7.1. Relationships among MIS and Topology modeling domains and Properties domains

53

models that are consistent with, but more general than, a given model. Finally, the abstraction

and concretization operators form a mapping between models and properties that accounts for

the inability of models to represent every last detail of a system. Figure 7.1 shows two modeling

formalisms and the relationships our metamodeling approach provides among them.

We rigorously formalize these three ideas and demonstrate their application to two common

modeling operations: transformation and generalization and refinement. Our contributions are as

follows:

1. Creating a theory of abstract interpretation for models of complex hybrid systems (Section 8)

[11, 12].

2. Creating verifiably sound refinement and generalization operations for certain model formalisms

(Section 9) [14].

3. Creating an approach to verifiably sound model transformation (Section 10) [11, 13].

The remainder of this section provides a more thorough discussion of system modeling

and metamodeling. In Section 7.1, we summarize a typical design process, explaining why models

are created and changed in the course of this process. Furthermore, we introduce metamodeling

concepts that relate one model to another or a model to the system it represents. In addition, we

describe related literature on metamodeling (Section 7.2), refinement and generalization (Section 7.3),

and model transformation(Section 7.4), providing a context for our work. Section 7.5 restates the

distinction of our research.

Parts of the discussion in this section are in the context of cyber-physical systems (CPSs),

rather than the broader context of complex hybrid systems. While our work is not restricted to

CPSs, we emphasize these systems because the tight coupling between the physical system and cyber

control portions of CPSs makes such systems particularly interesting and challenging from modeling

and metamodeling perspectives.

7.1. OVERVIEW OF MODELING AND METAMODELING

Models are created to enable questions to be answered from several perspectives [61]. Broadly

speaking, modelers can work from a descriptive perspective, creating models of existing systems

or physical phenomena in order to understand them, or from a prescriptive perspective, creating

54

models that serve as a specification for a system that is to be built.1 Most systems are modeled to

answer questions such as, “Can this system serve the demand of all its users?”, “What parts of this

system will fail in the next 20 years?”, or “Is it possible for this system to be harmful to its users?”.

Modelers can also ask more obscure questions: “How easy is it to re-configure this system?”, “What is

the least it can cost to maintain this system per year?”, and many others. The models required to

answer these questions incorporate knowledge about the system at varying levels of granularity: a

system reliability model may only need to know what components are in the system, while a safety

model may depend on specific implementation details of components. These models also incorporate

assumptions about the system made both by the modeler when creating the model and by the

limitations of the chosen modeling formalism. Furthermore, different modeling formalisms require

different evaluation approaches. Physics-based models are often based on differential equations and

evaluated through numerical simulation, dependability models incorporate probability distributions

and draw conclusions through statistical significance testing, and economic cost models are formulated

as optimization problems. Identifying the overlapping knowledge represented by different models of a

system thus becomes a truly daunting task.

In order to meaningfully relate models that represent a system, we must first understand how

models and systems relate. A system is a physical entity; a model is some description of a system.

We denote a model that is a “good” description of a system as faithful to that system [62, § 2.2].

Faithfulness is not an absolute property of a model; it is defined relative to “relevant” properties of a

system and its models. An absolutely faithful model would be analogous to a map of a forest that is

the same size as the forest. Such a map would be unwieldy to use and would need to be constantly

re-drawn as plant growth, animal movement, and erosion change the forest being mapped. The

process of determining a model’s faithfulness is known as model validation: checking that a model’s

predictions correspond with the reality defined by the system [63]. Our central goal will be to define

model manipulations that preserve some notion of faithfulness. In other words, modelers should be

able to trust these operations to produce models that represent, as much as is possible, the same

system the input models represent.

When thinking about model manipulations, it is helpful to start with an understanding of

how models evolve. A system representation often starts as a few high-level models that provide

a general idea of how the system meets its goals. For example, a power grid representation may

start with a topology model that captures generator capacity, approximate load demand, and a
1Lee and Sirjani [61] term these as scientific and engineering perspectives, respectively, but we find these names

to be too prescriptive when assigning roles to modelers; an engineer often uses both perspectives when studying an
existing system or validating a new one.

55

general layout of the main distribution lines. In addition, modelers may build an associated reliability

model that allows them to verify the system’s susceptibility to blackouts. Simulating the topology

model allows modelers to infer constraints on line capacity and transformer locations. Likewise, the

reliability model can help determine whether additional redundancy is necessary or if the power

network needs to be improved to help localize faults.

Once these high-level models demonstrate adequate fidelity, more detail can be added to

further specify the system.

Consider a reliability model that starts out relatively crude; additional detail is added over

time, refining the model. Conversely, use of a model may reveal that it is unnecessarily detailed,

motivating generalization. Removal of detail is typically denoted as “abstraction” in the literature;

we use “generalization” instead to avoid confusion with “abstract interpretation”, which we will

discuss later. As many modeling choices can be made when creating a model, many refinements

for a given model are possible, some of which may contradict each other. Likewise, generalization

can undo refinements made to a model, or simplify it to make its simulation feasible. Ideally, such

simplifications are done without producing results that would be contradicted by the more detailed

model.2

Now, consider refining the reliability model begins to reflect the operation of circuit breakers

and other protection devices. At this point, the reliability model jumps from a purely probabilistic

model to one that reflects discrete-time control operation to some extent. This change in semantics

defines a split between two model formalisms : one “probabilistic reliability” and the other “probabilistic

reliability and discrete time”. Another model manipulation comes into play here: we want to transform

the probabilistic model into one that can also reflect the operation of protection devices. Our goal is

to define such transformations in a way that preserves model faithfulness: the transformed model

should not contradict the initial model, and both should reflect the system being modeled.

These concepts of transformation, refinement, and generalization are also of interest from

a scientific perspective. The process of defining a modeling formalism and refinements and gener-

alizations for it consists of understanding that formalism’s perspective of a system, encoding that

perspective into a language, and determining what operations are possible in that language. Doing

so can lead to a better understanding of the limitations of a given formalism and the assumptions

it places on system operation. Model transformation translates a formalism’s perspective (and its
2What do we mean by “contradicted by” here? The short answer is “it depends on the modeling formalism”; for the

long answer, you’ll have to keep reading!

56

operations) into the language of a different model formalism. By creating transformations between

formalisms we can, for example, determine what effect changing the topology of a system has on

that system’s reliability.

7.2. METAMODELING APPROACHES

The task of metamodeling is to understand models as entities in themselves rather than

strictly a means of analyzing the operation of a system. Informally, metamodeling is “modeling

of modeling” rather than “modeling of systems”; to this end, some approaches go so far as to

describe metamodels with the same formalisms used to describe models, such as modeling UML

diagrams in UML. As with system modeling, there are numerous complementary approaches to

metamodeling that vary based on the models they are intended to metamodel, the intended uses of

the metamodeling approach, and performance and scalability requirements. We provide an overview

of several metamodeling approaches that can be applied to complex hybrid system modeling.

Metamodeling has been extensively studied in the context of software engineering [64]. Most

metamodeling approaches in software engineering lack support for the common modeling formalisms

used to describe complex hybrid systems. However, some efforts have been made to incorporate

continuous-time physical dynamics and non-functional attributes into software metamodeling ap-

proaches to allow for metamodeling of CPS control software. One example is CHESS, which links

state-based reliability modeling and UML architecture modeling to allow for semi-automated reli-

ability analysis of computer systems [65, 66]. A UML architecture model of system software and

hardware components is annotated with failure rates; based on the UML diagram, CHESS can

construct a reliability model of the system.

Several modeling formalisms, including Petri nets, Markov chains, fault trees, and bond

graphs, can be represented as graphs. Thus, multiple metamodeling approaches represent each model

as a graph accompanied by semantics for evaluating that graph. One such approach is AToM3 [67, 68],

which incorporates a variety of formalisms for representing system operation, including differential

equations, timed automata, and Petri nets. Individual models are represented graphs, as are

metamodels of those models — typically using an Entity-Relationship style notation to describe

the edges and vertices of a model as well as permissible connections between them. Metamodeling

with graphs allows for model transformations to be represented as graph rewriting rules. This

facilitates, for example, conversion of a non-deterministic finite automaton (NFA) to its deterministic

counterpart. The source model is searched for patterns specified by rewrite rules; upon a match,

57

the matched part of the graph is rewritten in the result model. While this approach is powerful,

graph pattern matching is a nondeterministic polynomial (NP) problem3 and it can be infeasible to

compute efficiently.

Another graph-based metamodeling approach is the OsMoSys system [69, 70], which is

capable of metamodeling many probabilistic graph-based models, including Petri nets, fault trees,

and queueing networks. Models using these formalisms can be created and connected through the

use of “bridge formalisms” that convert data from one model’s semantics to that of another. This

allows, for example, the throughput of a queuing network to be determined by a Petri net model [71].

The SIMTHESys project [72, 73] extends this graph-based approach to hybrid systems via the hybrid

Petri net and piecewise deterministic Markov process formalisms [74, 75]. Continuous-time dynamics,

such as room temperature or traffic speed, can be incorporated into discrete-event probabilistic

models with these formalisms.

Heterogeneous model co-simulation techniques, where models of several sub-systems are

simultaneously simulated, require identification of some overlaps between different modeling for-

malisms. The Möbius project [76, 77] takes a state-variable metamodeling approach, which can be

applied to models such as Petri nets and stochastic process algebras. Each modeling formalism is

described in terms of state variables and actions that update those state variables; Möbius uses these

to develop an evaluation strategy that ensures all models are simulated correctly [78]. However, their

state-variable and action metamodel is not intended to capture continuous-time physics dynamics.

An alternate approach to heterogeneous co-simulation is taken by Ptolemy [79], which uses

“directors” to evaluate submodels [80, 81]. For example, a system consisting of a discrete event

controller for a generator may consist of a model with a discrete event director [79, § 1.9]. This model

contains a sub-model of the gas-powered generator that uses a continuous-time director to evaluate

continuous mechanical and electrical dynamics. The discrete event director evaluates each of the

model components in its model; it hands evaluation of the continuous-time submodel over to the

continuous-time director. Composing directors is not always possible, depending on the semantics

they implement. Models may need special elements for signals to be usable to the containing model,

such as applying a discrete-time signal sampler to a continuous-time signal.

A third approach to co-simulation — and more broadly, co-modeling — is taken by the

INTO-CPS project [82]. This approach is based on development of a language, CyPhyCircus, which

can represent specifications for both discrete- and continuous-time behavior. Models made using

familiar tools, such as VDM-RT for control software [83] or Modelica for continuous-time physics [84],
3Graph pattern matching requires solving the subgraph isomorphism problem, which is NP-complete.

58

can be mapped into CyPhyCircus specifications. Simulation software can use these specifications

to evaluate models [85] or the specifications can be formally verified using an interactive theorem

prover [86, 87]. This approach, which is more challenging than Ptolemy’s, allows verification of the

soundness of mappings between models.

Bhave et al. [88] develop a general approach to multi-domain modeling based on architectural

views. In this system, a “base architecture” is created which captures all components in the system

as well as the physical and communication links between them. Each model of the system has an

associated “architectural view” representing the portion of the system relevant to that model; for

example, a network queueing model would use a view of only the networked components in the

base architecture. Each part of the model is mapped to a component in the view via a many-to-one

relationship; each component in the view is mapped to a corresponding part of the base architecture.

Restrictions on these relationships can be used to ensure all views are consistent with each other [89].

Furthermore, these views can be used to relate information among models to enable safety verification

of the whole system [90, 91].

7.3. REFINEMENT AND GENERALIZATION OF MODELS

Model refinement, broadly speaking, refers to the process of adding more detail to a model,

leading to a more precise specification of a system’s operation. The exact process of increasing the

precision of a model depends on its formalism; thus, refinements are usually developed for each

formalism individually. Much of the research on refinement focuses on specification languages, though

there is some research into refining performance and dependability models as well. In this section,

we survey model refinement approaches in general; in addition, we review refinements of Markov

chains to provide context for Section 9.1.

A common application of specification languages is in the field of software engineering, where

formal specifications are a key component of several engineering methodologies. Refinement of

specifications for software programs has been studied extensively; see [92, 93] for an introduction

and [94] for a recent survey of the literature. The essence of program specification and refinement is

augmenting a programming language with a specification language. Specifications describe “what” a

program should do; as a specification is refined, it begins to also describe “how” a program meets that

specification. For example,
√
x∗

√
x = x is a specification for a square root function; this specification

can be refined further until the programmer arrives at an implementation of various root-finding

techniques. Thus, programs are specifications that are also executable. To derive programs from

59

non-executable specifications, a refinement relation is defined and various refinements of specifications

are developed. This allows one to start with a high-level specification of a program’s behavior

and derive, through repeated refinement, an executable program whose specification refines the

initial specification. Specifications typically describe the function of a program, but non-functional

properties can also be used to guide program refinement [95].

A noteworthy bridge between program refinement and system model refinement is hybrid

Event-B, a modeling methodology that views a model at a lower abstraction level of a system as

a refinement of one at a higher abstraction level [96, 97]. This methodology is supported by the

tool Rodin, which automates part of the modeling process and enables formal verification of control

software for hybrid systems. Modeling begins at a high level, describing the controller interface,

events that can occur, and invariants that hold for the system. The system is then refined by

adding more detail: decomposing events and interfaces into sub-events or sub-interfaces and adding

invariants. This requires the modeler to show that the refinement still conforms to the higher-level

specification; the proof obligations generated by this refinement can be proven with help from Rodin.

This approach has been used to model safety-critical operating systems [98], airplane landing gear [99],

pacemakers [100], aircraft fuel supply [101], and numerous other systems.

Research on refinement of Markov chains has taken two forms. The first focuses on Interval

Markov Chains (IMCs) and their extension, Constraint Markov Chains (CMCs) [102, 103]. In these

formalisms, transition probabilities are not given exactly, but are bounded within an interval or given

by algebraic constraints, respectively. As each IMC or CMC corresponds to a collection of Markov

chains that satisfy the requirements given, it is possible to define refinement directly in terms of these

formalisms, rather than using a separate “system constraints” formalism, as we do. Each system

specification can be written as an IMC or CMC and then refined into a complete system model via

refinement and conjunction operations.

The second approach uses counterexample generation to validate Markov chain abstractions

used in model checking [104]. Starting with a coarse approximation of the original Markov chain,

model checking is performed until a counterexample is found. This counterexample is checked against

the original specification; if the counterexample does not hold, the approximate system is refined

so the counterexample no longer holds. This process repeats until a genuine counterexample is

found (one that holds for the original specification) or the model checking algorithm cannot find

60

a counterexample. A related work [105] bounds the uncertainty introduced by this approach to

state-space reduction by separately modeling the uncertainty present in the model and the uncertainty

added through abstraction.

A particularly helpful way to think of model refinement is in terms of refinement operations

that can be performed on a given model. These operations are the smallest changes to the model

that can be made while preserving some properties of the original model. One example of this is

given by Mitsch et al. [106], who define refinement operations for differential dynamic logic, a logic

used for writing specifications of hybrid systems. Refinement is based on state reachability: one

program refines another if its reachable states are a subset of the other’s. The authors develop

structural refinement operations that remove redundancies in specifications and behavioral refinement

operations that can introduce additional control paths or broaden system behavior. Some of these

operations require the modeler to prove that they have indeed refined the original system, but the

effort required to write such proofs is significantly less than the effort required to re-verify the entire

system specification. Basile et al. [107] take an alternate approach to state reachability refinement

wherein contract automata models are refined based on predicates that specify unreachable states.

This approach is useful when modeling several interacting controllers: each controller can be modeled

independently and their resulting automata composed together. The predicates that refine this

system specify further assumptions about how the controllers interact. Refinements in contract

automata models can be carried out on corresponding stochastic activity net models as well, allowing

for partial refinement of hybrid system models.

Another approach by Ishigooka et al. [108] focuses on model generalization, rather than

model refinement. This is still applicable to refinement, though, since if model a is a generalization of

model b, it is also the case that b is a refinement of a.4 The authors discuss the issue of generalizing

models to reduce the effort required to verify models and the resources required to simulate them.

They use the Bond Graph modeling formalism, which captures the flow of energy through a system,

to model physical system operation. Such models consist of energy storage and transformation

components, such as springs, masses, and levers, as well as links (“bonds”) between them. Their

generalization efforts focus both on generalizing the equations describing each component — for

instance, approximating a non-linear spring as a linear spring — and on replacing a group of related

components with fewer components that approximate the more complex operation of the original

group. This process is semi-automated, with generalizations being applied from a database and the

results checked for unacceptable errors by both design and verification engineers. However, no formal
4Mathematically, we say that generalization is dual to refinement.

61

description of the system properties to be preserved by generalization is offered, nor is a means

by which the generalization process itself can be verified. Thus, the modelers of the system must

independently verify whether a model produced by this process is truly a generalization of the source

model.

7.4. MODEL TRANSFORMATION APPROACHES

The field of model transformation contains numerous approaches for solving a variety of

related, but distinct, problems. We will focus on transformations between disparate modeling

formalisms at the same level of abstraction relative to the system they model — what Mens and

Van Gorp [109] would call horizontal, endogenous, semantical model transformations. Examples

of such transformations include mapping a power grid architecture model to a set of differential

equations describing its operation or to a model of its reliability. A related, but distinct, concern is

transforming several models of system components into a model of the whole system; we refer to this

as model composition.

One can think of a model transformation as a mapping from a source model (or models) to

a target model. In addition to studying these mappings, we study the properties these mappings

may have [109]. One such property is bidirectionality, meaning that a mapping from a source to

a target also produces a reverse mapping from the target to the source. These may be seen as

analogous to the mathematical notion of invertible functions ; however, invertible transformations are

only a subset of bidirectional transformations. Applying a bidirectional transformation followed by

its reverse transformation need not produce the original source model. Bidirectionality is desirable

because it can reduce the effort required to develop reverse transformations or even allow them to be

automatically generated. However, producing meaningful reverse transformations can be challenging;

for instance, if we think of compiling a C program as a transformation, there are potentially infinite

C programs (commonly referred to as “disassemblies”) which produce the same machine code.5

Another useful property of model transformations is automation: being able to operate

without user input or direction. From a practical perspective, automated transformations are easier

to use and thus more useful; however, sufficiently complex transformations may be difficult to

automate. Related is the ability to propagate changes in a source model to an already-existing target
5For instance, the x86 assembly add EAX, ECX could be the result of compiling total = sub_total + tax;, index

+= increment;, or even running_sum(count); if the function running_sum is inlined.

62

model, possibly without having to re-compute the entire transformation. Avoiding re-computation is

especially useful in the case where the transformation is not entirely automatic. Keeping models

synchronized as they evolve is essential to maintaining a consistent set of system models.

Finally, it is desirable for model transformations to be verifiably sound. Given a source model

that corresponds to a system, a verifiably sound model transformation produces a target model that

can also be shown to correspond to that system. In other words, a sound model transformation

preserves some properties of the system specified by the source model. Continuing with the C

programming language example, a verified C compiler is guaranteed to produce an assembly program

that replicates a C program’s behavior, as specified by the C standard’s abstract machine.6

Model transformation has been studied extensively in the context of software engineering,

primarily from two perspectives: generating source code from software diagrams (such as UML

diagrams), and generating performance models from software models [109]. Much of this work focuses

on transforming functionality models to implementations or performance models [110], but there has

been some focus on transforming functional models to dependability models as well [111–113]. None

of these transformations are specifically designed to be bidirectional, although there are some practical

implementations of deriving UML diagrams from source code [114]. Some of this research has focused

on using types and type safety to build and verify these transformations [115]. Unfortunately, models

from software engineering do not provide good means for describing the continuous-time dynamics of

physical systems, so any techniques will have to be adapted to be applicable to CPSs [116, 117].

Existing literature includes several different approaches to metamodel-based model trans-

formation for complex hybrid systems. UML class diagrams are used to metamodel Simulink and

Architecture Analysis and Design Language (AADL) models in [118, 119]. Simulink models partially

describe the physics of a system as well as controller operation. AADL models describe the archi-

tecture of a system and can be used for model checking and other model validation purposes. This

process requires some annotation of the Simulink source model to add information required for the

AADL model. After the transformation, the AADL model can be refined with additional execution

and timing details for verification.

A Formalism Transformation Graph is developed in [5, 62] and used as a basis for model

transformation in AToM3 [68]. This graph encodes the transitions defined among a number of

formalisms, including bond graphs, differential algebraic equations (DAEs), Petri nets, and cellular
6Most C compilers are not verified to be correct, and sometimes produce incorrect assembly. The C abstract machine

also does not always provide the guarantees that C programmers expect, leading to compilers taking optimizations
that seem wrong but are legally “correct”. Choosing which properties a transformation must preserve is an ongoing
engineering challenge.

63

Metamodeling Complex Hybrid Systems

Foundations

Graph-based

AToM3

SIMTHESys

Co-Simulation

Möbius

Ptolemy

Specification-
Based

INTO-CPS

Architectural
Views

Refinement and
Generalization

Controller

Event-B

Markov Chain

Constraint
Markov Chains

Counterexample
Generation

Operation-Based

Differential
Dynamic Logic

Contract
Automata

Bond Graphs

Model
Transformation

Metamodel-Based

Simulink →
AADL

Formalism Trans-
formation Graph

Ad-Hoc

Bond Graphs →
Signal Flow

Graphs

CA → SAN

Figure 7.2. Overview of related literature

automata. Transformations can be bidirectional, but most are homomorphic relationships where some

information from the source model is not preserved in the target model. The most significant instance

of this information loss is in the transformation of continuous-time models, such as bond graphs

and DAEs, to discrete-event modeling formalisms. However, this can be an advantage for producing

simulation models: a continuous-time physics-based model can be transformed into a discrete time

model, then merged with discrete-time control models to produce a discrete-time simulation of the

entire system. A distinct advantage of the formalism transformation graph is that introducing a

new formalism requires one to define only a single transformation to the next “closest” formalism.

Transformations to other formalisms are then performed by a series of transformations, each one step

through the graph from the source formalism to the target formalism.

64

Numerous examples of ad-hoc model transformations for complex hybrid systems can be

found in the literature. Ishigooka et al. [108] develop a transformation from bond graphs, which

encode continuous-time power flow through a physical system, into discrete-time signal flow diagrams.

These signal flow diagrams can be combined with other discrete-time control elements and easily

simulated. The transformation is automatic, but not designed to be bidirectional or verifiable. Basile

et al. [107] take a different approach, starting with contract automata (CA) models of controllers,

then transforming them to stochastic activity network (SAN) models, which allow for representation

of continuous-time thermodynamics. They show that this automatic process produces models that

are bisimilar to the input models, meaning that verified properties of CA models also hold for their

SAN equivalents.

7.5. SUMMARY

The modeling of complex hybrid systems is a multifaceted challenge, as reflecting different

aspects of system operation may necessitate the use of several distinct models. Maintaining consistency

among the various models of a system, enabling modelers to add information about a system to a

model, and developing new models from existing ones are can be accomplished with metamodeling.

While metamodeling encompasses a variety of operations on models, we focus on three particular

aspects: metamodeling foundations, model refinement, and model transformation. Related work on

these topics is summarized in Figure 7.2.

Our work examines the interaction between model transformation, model refinement, and

sound metamodeling techniques — ones which produce faithful models. We also identify desirable

properties of metamodeling approaches motivated by a desire to develop multi-purpose metamod-

eling approach, rather than focusing exclusively on, e.g., co-simulation. In this aspect, our work

complements that of the INTO-CPS project, making explicit some of the foundational choices they

have made. As model refinement is central to our work, we depend on the existing literature for

refinement operations, but extend those approaches to other formalisms used in modeling of complex

hybrid systems. Finally, we aim to provide a more formal basis for transformations between models,

ensuring soundness and bidirectionality. This approach has the unique benefit of specifying system

properties that are preserved through a particular transformation.

65

8. ABSTRACT INTERPRETATION OF MODELS

In this section, we propose a theory of Abstract Interpretation for system modeling. This

theory provides a foundation for reasoning about the semantics of systems and developing approxi-

mations of those semantics. We use it to relate the semantics of a system to the semantics of models

of that system. A more traditional development of abstract interpretation in the context of program

execution can be found in Appendix C.

8.1. SOUNDNESS AND COMPLETENESS

Two properties of approximate semantics are relevant to our work. First, an approximate

semantics is sound if it always produces results that contain the exact result. For example, if we

approximate whether −5 + 2 is positive, negative, or zero, the result “any option” is sound, as is

“negative or zero” or just “negative”, but the approximation ‘positive or zero” is not sound. In other

words, sound approximations at worst overapproximate the correct result. Second, an approximate

semantics is complete if it always produces the exact result. Thus, in the previous example, only the

answer “negative” is acceptable for a complete semantics. Completeness is a rather strong requirement,

so complete semantics are uncommon.

8.2. SEMANTICS OF PROGRAMS AND SYSTEMS

In these definitions, we talk of “exact results”; by what process are these results produced?

The equation −5 + 2 is a starting state; it is reduced to −3 by a computation following the exact

semantics of arithmetic on the integers. Likewise, our approximations of the sign of the result are

computed following some approximate semantics. Finally, there is some underlying logic and equality

that allow us to make statements about these results.

More precisely, we might understand this as a program p that takes a pair of inputs and

computes their sum, i.e., (x, y) 7→ x+ y. In the context of p, its concrete semantics reduce (−5, 2) to

−3; we write this as p ⊢ (5,−2) ⇝ −3. Likewise, a sound approximate semantics of p might give

p ⊢ (negative,positive)▷ negative. Abstract interpretation provides a means of relating these

states and semantics to show their soundness.

This notion of states and transitions also applies to physical systems. We view model

semantics as abstractions of system semantics. A system transitions from one physical state to

another; this may entail a change in a model’s state. For some system S, concretely we have

66

S ⊢ s1 ⇝ s2 and abstractly S ⊢ m1 ▷m2. These transitions take a variety of forms: for instance, an

air conditioner turns on, increasing load on a power grid; scale builds up in a pipe, reducing flow in a

water distribution network; a circuit breaker fails shut, reducing the ability of a control system to

contain a future fault. Because the model semantics ▷ is an abstraction of the system’s behavior ⇝,

not every state transition will lead to a model transition. This allows models to only capture certain

behaviors of a system.

The remaining component of our theory thus far is the context in which these transitions

take place: p or S, respectively. For programs, p is some syntactic representation of that program

and ⊢ is some notion of logical entailment that establishes the relationship between p’s syntax and

the various interpretations of p. Unfortunately, physical systems lack a well-defined syntax; however,

this is not an insurmountable issue. The purpose of ⊢ is to establish a relationship between a system

S and possible behaviors of that system and of models of that system. This relationship is known in

the modeling world as “faithfulness”: the extent to which behaviors of a model reflect the behaviors

of a system. Thus, when we write S ⊢ m1 ▷m2, we mean that the given model transition is faithful

to the physical system’s behavior.

8.3. SPECIFYING SYSTEM SEMANTICS

Another challenge to applying abstract interpretation to system modeling is the issue of

representing system semantics. There is no generally accepted means to exactly specify a cyber-

physical system’s semantics, though several logics have been proposed for specifying various properties.

Fortunately, an exact representation of semantics is not necessary for this approach; we can achieve

many of our goals by working with the abstract semantics of models and the less-abstract semantics

of partially specified system properties.

Whether modelers are developing a design of a new system or describing an existing system,

it is quite unlikely for them to fully know every detail of that system. Thus, we build a domain of

system properties with a notion of “specificity” which allows properties to be refined as the modeling

and validation process continues. Lattices (see Appendix A) offer a useful formalism for describing

such a domain.

We define a complete Properties lattice ordered by specificity: for p1, p2 ∈ Properties, p1 ⊑

p2 means that the constraints in p1 and p2 are not contradictory and that p1 places the same or more

constraints on a system than p2 does. For example, p2 could constrain the reliability of a component

to fall in the range (0, 1], whereas p1 could require that component to have a reliability of 0.95.

67

The meet (denoted as ⊓) of two elements of Properties places the constraints of both

elements on a system; the join (denoted as ⊔) implies satisfaction of the constraints of either element.

Suppose p1 requires a component’s reliability to fall in [0.8, 1.0] and p2 constrains it within [0.75, 0.9].

Then p1 ⊓ p2 will require it to be in [0.8, 0.9] and p1 ⊔ p2 within [0.75, 1.0].
d

and
⊔

extend this

concept to subsets of Properties.

For certain p1, p2 ∈ Properties are contradictory, p1 ⊓ p2 will result in a constraint that is

impossible to satisfy. If p1 requires a component to have a reliability in [0.5, 0.7] and p2 requires

it in [0.9, 1], then it is impossible for any component to meet both constraints. In this paper, we

require that every element of Properties to be satisfiable except for ⊥, the “impossible” constraint.

Therefore, for this example, p1 ⊓ p2 = ⊥. Note that ∀p ∈ Properties,⊥ ⊑ p.

To summarize, each element of the Properties lattice describes one or more systems. In the

general case, p describes a set of systems, all of which meet the constraints in p. If every constraint

in p ∈ Properties has exactly one possible choice, p will describe a single system.

8.4. SPECIFYING MODEL SEMANTICS

We now consider how modeling formalisms can be represented in a way that is compatible

with Properties. As a given element of the Properties lattice may not define a single system, we

must account for the possibility that multiple models describe the given properties. For example, if

p ∈ Properties does not constrain the reliability of a component to a single value, several reliability

models may plausibly be abstracted from p. Therefore, in the same way that the Properties lattice is

defined, we also define the domain of each modeling formalism to account for the nature of potentially

imprecise system specifications. This allows us to abstract a “most general” model from p.

To ensure that this approach is broadly applicable, we can define this domain using structure

external to the modeling formalism itself. Thus we do not have to require, say, that a reliability model

formalism be able to express the concept of a component having a range of possible reliabilities. We

use a powerset lattice to provide this extra structure. For a given model formalism, the set Model

contains all possible models expressible in that formalism. The powerset lattice P(Model) then

forms a lattice ordered by specificity: for M1,M2 ⊆ Model, M1 ⊆ M2 indicates that M1 contains

fewer possible models describing a system, and thus places more constraints on the system, than M2

does. Likewise, M1 ∩M2 produces a set of models that fit the constraints associated with M1 and

68

with M2; M1 ∪M2 produces a set of models where constraints from either may hold. Singleton sets

(i.e., sets of the form {m}, m ∈ Model) correspond to fully-specified models, and ∅ = ⊥ corresponds

to an “impossible” system—one with contradictory modeling requirements.

However, this construction does have a tradeoff: Properties must also be a powerset lattice.

Otherwise, it is not possible for Properties to fully capture the constraints given by a set of models.

This may lead to “property explosion” or “model explosion” (in the sense of “state space explosion”

faced by some model formalisms).

An alternate solution that avoids these issues and places fewer constraints on Properties is

to imbue a model formalism itself with some specificity ordering. Section 9 discusses this approach

and develops it for a reliability modeling formalism.

Either way, we will assume we have a set of models of a given formalism, Model, a lattice

of these models ordered by specificity, Model, and an inclusion function lift : Model → Model that

connects the two. In the case where Model = (P(Model),⊆), we have lift(m) = {m}. For the

lattice Model, we will use the rounded operators (⊆,
⋂
,
⋃

) to prevent confusion with the square

operators of the lattice Properties, and of lattices in the abstract.

8.5. RELATING MODELS AND PROPERTIES

Any system S ∈ Sys is described by a number of elements of Properties. To formalize

this notion, we use a correctness relation to relate a system to properties (and later, models) that

describe it. We suppose a relation RP : Sys → Properties where S RP p if and only if p describes

the system S. We must assume the existence of RP, since the properties of the system being designed

are determined by the designer. However, abstract interpretation allows us to induce correctness

relationships between systems and models based on RP—in other words, abstract interpretation

enables sound transformations between system properties and system models.

Definition 8.1. A correctness relation RL : Sys → L relates systems to elements of a lattice L. Two

attributes hold for RL:

(i) If S RL l1 and l1 ⊑ l2, then S RL l2.

(ii) If ∀l ∈ L′ ⊆ L,S RL l, then S RL

d
L′.

69

S ⊢ s1 ⇝ s2

∥ ∥
RM ⇒ RM

∥ ∥
S ⊢ m1 ▷ m2

Figure 8.1. Soundly connecting models, properties, and systems

In terms of Properties and its correctness relation RP, Property (i) states that we can relax

correct constraints without violating their correctness. The reverse does not hold, otherwise, the

inconsistent constraint ⊥ would describe every system. The formalization of relaxation of constraints

as described by Property (i) allows us to generalize constraints and therefore plays a crucial role in

modeling abstraction.

Property (ii) requires that for any set of constraints L′ there exist a “best” constraint that

correctly describes any system described by every constraint in L′. We can apply this property to

the constraints derived from several models to narrow down our description of a given system’s

properties. In this sense, it allows us to derive a specific result from a number of more general results.

Note that the converse of (ii) follows from (i), so (ii) could also be written as a biconditional.

Given these correctness relationships, we can connect models and properties soundly, as

shown in Figure 8.1. Suppose that the system S transitions (⇝) from state s1 to s2. If our model

soundly abstracts (RM) the initial system state s1 with model state m1, and the model of S transitions

(▷) from state m1 to state m2, then we know that m2 soundly abstracts (RM) the final state s2.

This conclusion holds under the assumption that the model is faithful to the system (S ⊢).

8.6. ABSTRACTION AND CONCRETIZATION

Given a correctness relation RP for Properties, we desire to define a mapping between

Properties and a modeling formalism Model that induces a correctness relation RM : Sys → Model.

Furthermore, this mapping must allow for the modeling domain to abstract system constraints. For

instance, a topology model should be able to discard constraints on component reliability.

70

The formalism of choice for this task is a Galois connection:

Definition 8.2. A Galois Connection (P, α, γ,M) between two complete lattices P and M consists

of a pair of monotone functions α : P → M and γ : M → P for which the following relationships hold:

(γ ◦ α)(p) ⊒ p (8.1)

(α ◦ γ)(m) ⊑ m (8.2)

We refer to P as the concrete domain, M as the abstract domain, α as the abstraction operator,

and γ as the concretization operator.

In terms of models and properties, α abstracts a model, m, from a set of constraints on a

system, p, and γ derives, or concretizes, system constraints from a model of that system. Relationship

(8.1) states that abstracting the model m from constraints p, then concretizing constraints from

that model, results in constraints that are at most more general than those of p. In other words,

abstraction may relax constraints irrelevant to the model formalism, but it cannot produce a model

that implies constraints that contradict p. Relationship (8.2) requires that Properties be able to

completely capture the constraints imposed by each model formalism, meaning that if constraints

are concretized from a model, m, of a system, any other model abstracted from these constraints will

be as least as specific as the original model, m. Concretization may introduce additional constraints,

but in practice, the ⊑ of (8.2) will often be strict equality in practice.

We describe the interactions between these lattices and the underlying set of models via the

diagram in Figure 8.2.

Model Properties

Model

α

γ

lift

Figure 8.2. Model and system properties interaction diagram

Next, we show that each Galois connection induces a correctness relation RM on the abstract

domain.

Theorem 8.1. Given a Galois connection (P, α, γ,M) and a correctness relation RP : S → P, the

relation RM : S → M defined by sRM m ⇐⇒ sRP γ(m) is a correctness relation.

71

Proof. We must show that properties ((i)) and ((ii)) from Definition 8.1 hold for RM. Take s ∈ S

and m1,m2 ∈ M.

sRM m1 ∧m1 ⊑ m2

⇐⇒ sRP γ(m1) ∧m1 ⊑ m2 (Defn. of RM)

⇐⇒ sRP γ(m1) ∧ γ(m1) ⊑ γ(m2) (γ monotone)

=⇒ sRP γ(m2) (Prop. ((i)) for RP)

⇐⇒ sRM m2 (Defn. of RM)

The proof of ((ii)) uses the fact that γ is completely multiplicative, that is,
d
{γ(m) | m ∈

M′} = γ (
d
M′). Take s ∈ S and M′ ⊆ M.

∀m ∈ M′sRM m

⇐⇒ ∀m ∈ M′, sRP γ(m) (Defn. of RM)

=⇒ sRP

l
{γ(m) | m ∈ M′} (Prop. ((ii)) for RP)

⇐⇒ sRP γ
(l

M′
)

(Multiplicativity of γ)

⇐⇒ sRM

l
M′ (Defn. of RM)

Put in terms of models and system properties, if we define a Galois connection between

Properties and the lattice for a given modeling formalism Model, then every correct collection of

system constraints abstracts to a correct model and every correct model concretizes to a correct

collection of system constraints. Therefore, this is a provably sound definition of the nature of model

abstraction.

72

9. REFINEMENT & GENERALIZATION

The concepts of model refinement and generalization necessarily operate relative to specific

system properties. Depending on the exact model, we can change numbers in equations or constraints,

insert or remove edges in graphs, add or remove equations, and much more; determining which of

these operations are refinements and which are generalizations depends wholly on the semantics of

the model formalism. Therefore, when creating model transformations, we will explicitly describe

these properties and how they relate to the model formalism in question.

For example, consider a model which captures the components in a system along with their

reliabilities. Roughly speaking, if the model mr is a refinement of a model mg, the constraints

imposed on the system by mr should imply the constraints imposed by mg. For example, if mr

requires a component c to have reliability ≥ 0.9, mg can require that c have reliability ≥ 0.7—this

constraint is strictly weaker than the constraint of mr. However, mg could not require c to have

reliability ≥ 0.99. In other words, a system meeting the requirements of mr would provide equal

or better reliability than a system meeting mg’s requirements alone. If mr refines mg, then mg

generalizes mr, so we can use the same implication relationship to describe both refinement and

generalization. We formally abstract system properties and implication to analyze the soundness of

our definitions of generalization and refinement.

9.1. MARKOV IMBEDDABLE STRUCTURE MODELS

We propose a method for generalization and refinement of Markov Imbeddable Structure

(MIS) reliability models, where the system-level state of a system is determined based on the state of

its individual components. The initial state is one where every component is functional, the terminal

state is one where enough components have failed to cause system failure, and intermediate states

correspond to the system remaining functional despite the failure of some of its components. These

models describe a system composed of n components as a Markov chain, encoding each component’s

reliability and the effect of its failure on other components. The reliability of the system is then

the probability that the system remains functional after taking n steps through the Markov chain.

Our work focuses on MIS models where the states of the Markov chain are defined by component

status (e.g., “component 3 failed” or “only component 2 functional”) and where the component status

described by a state remains the same regardless of which component’s failure is being considered.

73

This encompasses the vast majority of MIS models, especially as used in practice; however, it does

not encompass certain unusual MIS models, such as models of consecutive-k-of-n systems.1 These

we will address in the future.

9.1.1. Properties of MIS Reliability Models. The MIS models we consider in this

work place three broad constraints on a system: what components are in the system, how reliable

each component is, and which components depend on others to remain functional. The properties

domain Prop defines these as a lattice, allowing us to relate these properties to MIS models.

As we will need some way to identify components, let Comps ≜ {c1, c2, . . . } be the set of

all possible component names.

Each element p ∈ Prop is a triplet p = (C,R,D) where

• C ⊆ Comps is the finite set of names of components in the system (e.g., {c1, c2, c3});

• R : C → [0, 1] is a function that specifies a lower bound for the reliability of each component: if

the reliability of c is p, then R(c) ≤ p; and

• D ⊆ Deps is the finite set of component dependencies, as described in the next section.

For example, a system consisting of two 90% reliable power lines in parallel where the failure of one

causes the other to become overloaded and thus fail as well would be described by the properties

(C = {c1, c2},R(c1) = R(c2) = 0.9,D = {⟨c1 ⇝ c2,S⟩, ⟨c2 ⇝ c1,S⟩}).

Component dependencies (elements of Deps) are represented by the relation ⟨_ ⇝ _⟩ :

P(C) → P(C ∪ {S}).2 The statement ⟨· · ·1 ⇝ · · ·2⟩ means “the failure of the components in the set

· · ·1 immediately leads to the failure of the components in · · ·2”. Should S appear in · · ·2, the system

also fails as a result of the components of · · ·1 failing. The components on the left side (· · ·1) are

referred to as causes and the components on the right (· · ·2) as effects.

These dependencies correspond to state transitions. Suppose we have a system with com-

ponents C = {c1, c2, c3}. We can represent the state of the components as three-bit strings: 111

corresponds to the system state where all components are functional, 101 corresponds to the state

where c2 has failed, etc. A dependency ⟨c1 ⇝ ∅⟩ corresponds to a transition from 111 to 011 when

c1 fails—the failure of c1 does not influence the functionality of other components in the system.

Likewise, a dependency ⟨c1, c2 ⇝ c3,S⟩ corresponds to transitions from 101 to 000 when c1 fails

and from 011 to 000 when c2 fails; furthermore, in state 000 the system is considered failed.

Sec. 9.1.5 formalizes this correspondence.
1In short, the transition probability matrices for consecutive-k-of-n systems are not upper triangular; for more

detail, see [120, pp. 344–345].
2P(S) denotes the set of subsets (“powerset”) of the set S.

74

As there are a number of ways to write dependencies, we place some constraints on them

to ensure the constraints on the system are consistent with how components fail and fully cover all

cases of system behavior. These constraints are split into equivalences and well-formedness (WF)

properties.

9.1.1.1. Equivalences. The first equivalence rule states that if a component appears on

both sides of ⇝, we can remove it from the right side. The failure of any component trivially causes

that component to fail; this rule states that we need not write this fact explicitly:3

⟨c · · ·1 ⇝ c · · ·2⟩ ≡ ⟨c · · ·1 ⇝ · · ·2⟩. (Tautology)

The remaining two equivalences are between sets of dependencies, rather than between two

individual dependencies. If we have two dependencies with the same cause but different effects, we

can produce one dependency that represents both by taking the union of their effects:

⟨· · ·1 ⇝ · · ·2⟩

⟨· · ·1 ⇝ · · ·3⟩

 ≡ {⟨· · ·1 ⇝ · · ·2 · · ·3⟩} . (Union)

Finally, a dependency with no causes cannot occur:

{⟨∅⇝ · · ·⟩} ≡ ∅. (Inaction)

9.1.1.2. Well-formedness properties. The WF properties describe a system-level view

of dependencies: what dependencies need to be present in D to make a consistent set of system

constraints. First, every component must have a dependency where it is the sole cause of failure

(although the effect may be the empty set). These correspond to transitions from the initial 1 · · · 1

state:

∀c ∈ C,∃⟨c⇝ · · ·⟩ ∈ D. (Initiality)

In addition, at least one sequence of failures must lead to the system failing (otherwise, the

system’s reliability would be 1 and there would be nothing to model):

∃⟨· · ·1 ⇝ S · · ·2⟩ ∈ D. (Termination)
3A note on notation: c · · ·1 refers to a set containing the component c and the components of the set · · ·1.

75

Finally, components cannot recover as a result of the failure of other components. Thus, if

components · · ·1 cause components · · ·2 to fail, any other dependency where · · ·1 have failed must

also have · · ·2 failed.

∀⟨· · ·1 ⇝ · · ·2⟩ ∈ D,

∀⟨· · ·1 · · ·3 ⇝ · · ·4⟩ ∈ D,

· · ·2 ⊆ · · ·3 ∪ · · ·4 .

(Monotonicity)

For instance, if we have ⟨c1 ⇝ c2⟩, Monotonicity would permit the dependencies ⟨c1, c3 ⇝ c2⟩

and ⟨c1, c2 ⇝ c3⟩ but forbid ⟨c1, c3 ⇝ ∅⟩, as c2 must always fail when c1 fails.

9.1.2. Examples. Before addressing generalization and refinement of properties, we demon-

strate a few examples of how dependencies are used to specify system behavior. First, consider the

dependencies in the earlier parallel-component example: D = {⟨c1 ⇝ c2,S⟩, ⟨c2 ⇝ c1,S⟩}. In this

system, the failure of component c1 leads to the failure of c2 and system failure, and vice versa for c2.

This system has two states, 11 and 00 ; the failure of either component causes a transition from the

first to the second.

By contrast, a parallel-component system where the two components are independent would

be specified by D = {⟨c1 ⇝ ∅⟩, ⟨c2 ⇝ ∅⟩, ⟨c1, c2 ⇝ S⟩}. This system has all four possible states and

all valid transitions between states.

A system with two components in series produces a more interesting “failed” state. These

components are independent, as one failing does not cause the other to fail, but both need to be

functional for the system to function: D = {⟨c1 ⇝ S⟩, ⟨c2 ⇝ S⟩}. This system also has two states:

the initial state 11 and the failed superstate 01 10 .4 Once the system has failed, we are no longer

interested in its behavior; thus, for this system, we consider 00 unreachable.

9.1.3. Generalization of MIS Properties. Now that we have described the elements

of Prop, we can describe how to generalize them. The goal of generalizing an element of Prop

is to produce an element of Prop that relaxes the constraints of the first element but does not

contradict it. Thus, generalizations are sound by definition; one can always soundly generalize a

model. Understanding how constraints can be generalized allows us to order Prop by generalization.

9.1.3.1. One-step generalizations of dependencies. For a given reliability model, one

way to generalize dependencies is to lower the constraint on a component’s reliability: a more

reliable component can always be substituted for a less reliable one. We can relax the reliability of a
4MIS modeling requires a single “failed” system (super)state; we leave unification of functional states into superstates

for future work.

76

component, c, to a lower constraint r < R(c) by

relax_rel(C,R,D)[_,_] : C → [0, 1] → Prop

relax_rel(C,R,D)[c, r] ≜ (C,R′,D) (9.1)

where

R′(c′) ≜

r if c = c′

R(c′) otherwise.
(9.1a)

The other means of generalizing system constraints is to generalize component dependencies.

We begin by considering the smallest actions we can take that generalize system dependencies while

maintaining the WF properties. There are two possible operations: merging two components and

adding a new dependency ⟨· · ·⇝ c⟩ among existing components. Both of these operations take one

element of Prop and infer another.

Two distinct components c1 and c2 can be merged into a single component cm (where the

name cm does not already appear in C \ {c1, c2}) by replacing every instance of c1 and c2 with cm:

merge(C,R,D)[_,_ → _] : C → C → Comps → Prop

merge(C,R,D)[c1, c2 → cm] ≜ (C′,R′,D′) (9.2)

where

C′ ≜ {cm} ∪C \ {c1, c2} (9.2a)

R′(c) ≜

min(R(c1),R(c2)) if c = cm,

R(c) otherwise.
(9.2b)

D′ ≜ {⟨m(c)⇝ m(e)⟩ | ⟨c⇝ e⟩ ∈ D} (9.2c)

m(c) ≜

{cm} ∪ c \ {c1, c2} if c1 ∈ c ∨ c2 ∈ c,

c otherwise.
(9.2d)

77

When defining a generalization, we should ensure that it only relaxes constraints. Thus, when

choosing the reliability bound R′(cm) of the merged component, we must pick the least restrictive

choice min(R(c1),R(c2)). Effectively, this choice performs two generalizations: first, we relax the

tighter of the reliability bounds of c1 and c2 by setting R(c1) = R(c2), then we merge c1 and c2 into

one component.

The dependencies that merge generates are the result of applying the following rules until a

fixed point is reached (i.e., no more dependencies match the left-hand side):

⟨c1 · · ·1 ⇝ · · ·2⟩ 7→ ⟨cm · · ·1 ⇝ · · ·2⟩

⟨c2 · · ·1 ⇝ · · ·2⟩ 7→ ⟨cm · · ·1 ⇝ · · ·2⟩

⟨· · ·1 ⇝ c1 · · ·2⟩ 7→ ⟨· · ·1 ⇝ cm · · ·2⟩

⟨· · ·1 ⇝ c2 · · ·2⟩ 7→ ⟨· · ·1 ⇝ cm · · ·2⟩

The other possible generalization is adding a dependency among existing components. This

may seem counterintuitive; however, it is a stronger claim to say that a component is independent of

another—the fewer dependencies a system has, the more reliable it is. Adding a dependency from

a nonempty set of components c to a component e /∈ c means that whenever the components in c

cause a failure, e is amongst the effects. As all the components in c and e are in C already, we need

only modify the dependencies:

add_dep(C,R,D)[_⇝ _] : P(C) → C → Prop

add_dep(C,R,D)[c⇝ e] ≜ (C,R,D′) (9.3)

where

D′ ≜ {a(⟨c′ ⇝ e′⟩) | ⟨c′ ⇝ e′⟩ ∈ D} (9.3a)

∪ {⟨c⇝ u ∪ {e}⟩}

a(⟨c′ ⇝ e′⟩) ≜

⟨c′ \ {e}⇝ e′ ∪ {e}⟩ if c ⊆ c′,

⟨c′ ⇝ e′⟩ otherwise.
(9.3b)

u ≜
⋃

{e′ | ⟨c′ ⇝ e′⟩ ∈ D where c′ ⊆ c} (9.3c)

78

Again, we can view the dependencies in D′ after adding the dependency ⟨· · ·1 ⇝ e⟩ as the

result of rewriting matching dependencies in D:

⟨e · · ·1 · · ·2 ⇝ · · ·3⟩ 7→ ⟨· · ·1 · · ·2 ⇝ e · · ·3⟩

⟨· · ·1 · · ·2 ⇝ · · ·3⟩ 7→ ⟨· · ·1 · · ·2 ⇝ e · · ·3⟩

and adding the dependency ⟨· · ·1 ⇝ e · · ·2⟩ where the components · · ·2 are the effects of failures of

components in · · ·1 as required by Monotonicity.

For an example of the effect of generalization operations on a system, consider a system with

three independent components:

p = (C = {c1, c2, c3},R(_) = 0.9,D = {

⟨c1 ⇝ ∅⟩, ⟨c2 ⇝ ∅⟩, ⟨c3 ⇝ ∅⟩,

⟨c1, c2, c3 ⇝ S⟩

})

Introducing a dependency ⟨c1, c2 ⇝ c3⟩ results in the following system:

p′ = add_depp[c1, c2 ⇝ c3]

= (C′ = {c1, c2, c3},R′(_) = 0.9,D′ = {

⟨c1 ⇝ ∅⟩, ⟨c2 ⇝ ∅⟩, ⟨c3 ⇝ ∅⟩,

⟨c1, c2 ⇝ c3⟩†,

⟨c1, c2 ⇝ c3,S⟩‡

 ≡ ⟨c1, c2 ⇝ c3,S⟩

})

Of note: the dependency marked † is the new dependency added by add_dep and the dependency

marked ‡ is the result of the first substitution rule in (9.3b). Both rules reduce to one via the Union

property.

79

Continuing the example, merging c2 and c3 into c4 gives us the system

p′′ = mergep′ [c2, c3 → c4]

= (C′′ = {c1, c4},R′′(_) = 0.9,D′′ = {

⟨c1 ⇝ ∅⟩,

⟨c4 ⇝ ∅⟩,

⟨c1, c4 ⇝ c4,S⟩ ≡ ⟨c1, c4 ⇝ S⟩

})

where both components are independent and the failure of both leads to system failure.

9.1.3.2. Multi-step generalization of dependencies. The example of the previous

section illustrates the process by which successive generalization steps are applied to system properties.

To describe this more formally, let G be the set of all generalization operations and G∗ be the set of

finite sequences of elements of G. We define the act of applying a sequence of generalizations to an

element of properties, J_K(_) : G∗ → Prop → Prop, by

JgK(p) ≜

p if g = ()

JgsK(g′p) if g = (g′, gs).

(9.4)

9.1.3.3. Generalization as a partial order. With the ability to apply a sequence of

generalizations, we now turn to the task of ordering elements of Prop. First, we prove some

monotonicity properties of any q ∈ Prop generalized from some p ∈ Prop.

Theorem 9.1. For all p = (C,R,D) ∈ Prop and for all g ∈ G where (C′,R′,D′) = JgK(p),

(i) |C′| ≤ |C|,

(ii) ∀c ∈ C ∩C′,R′(c) ≤ R(c), and

(iii) if C = C′, ∀⟨c⇝ e′⟩ ∈ D′, if ⟨c⇝ e⟩ ∈ D, e ⊆ e′.

Proof. Proceed by case analysis on g.

Case g = relax_rel[c, r]:

(i) C′ = C

80

(ii) For c′ ∈ C,

R′(c′) < R(c′) if c = c′

R′(c′) = R(c′) otherwise

(iii) D′ = D

Case g = merge[c1, c2 → cm]:

(i) |C′| = |C| − 1 ≤ |C|

(ii) For c ∈ C,

R′(c) ≤ R(c) if c = cm

R′(c) = R(c) otherwise

(iii) C ̸= C′

Case g = add_dep[c⇝ e]:

(i) C′ = C

(ii) R′ = R

(iii) Consider ⟨c′′ ⇝ e′′⟩ ∈ D′.

If c = c′′, then (by Union)

⟨c′′ ⇝ e′′⟩ ≡

a(⟨c′′ ⇝ e1⟩)

a(⟨c′′ ∪ {e}⇝ e2⟩)

⟨c′′ ⇝ u ∪ {e}⟩

so e′′ = e1 ∪ e2 ∪ u ∪ {e}, where u is defined as in Equation 9.3c. If ⟨c′′ ⇝ e1⟩ ∈ D, then

e1 ⊆ e′′.

Otherwise,

⟨c′′ ⇝ e′′⟩ ≡

a(⟨c′′ ⇝ e1⟩)

a(⟨c′′ ∪ {e}⇝ e2⟩)

and e1 ⊆ e′′ = e1 ∪ e2 if ⟨c′′ ⇝ e1⟩ ∈ D.

To form a partial order on Prop using these generalization operations, we say that if pg

generalizes pr, there exists some sequence of generalizations that witnesses that fact:

Definition 9.1. pg ∈ Prop generalizes pr ∈ Prop, written pr ⊑ pg, if ∃g ∈ G∗, JgK(pr) = pg.

Theorem 9.2. ⊑ forms a partial order on Prop.

81

Proof. Reflexivity : ∀p ∈ Prop, J()K(p) = p =⇒ ∀p ∈ Prop, p ⊑ p.

Antisymmetry : Take p, q ∈ Prop such that p ⊑ q and q ⊑ p. Then there exist gp, gq ∈ G∗

such that JgpK(p) = q and JgqK(q) = p. Proceed by case analysis on gp.

If gp = (), then q = JgpK(p) = J()K(p) = p.

Otherwise gp = (g, gs); we desire to show, using Theorem 9.1, that g cannot be “undone” by

any generalization and thus q ̸⊑ p. Let (Cp,Rp,Dp) = p, (C′,R′,D′) = JgK(p), and (Cq,Rq,Dq) = q.

If g = mergep[c1, c2 → cm], then |Cq| < |Cp|.

If g = relax_relp[c, r], then Rq(c) ≤ R′(c) < Rp(c) or c ̸∈ Cq.

If g = add_depp[c⇝ e], then either ⟨c⇝ ep⟩ /∈ Dp or ep ⊂ eq.

Thus, by Theorem 9.1, q ̸⊑ p.

Transitivity : Take p, q, r ∈ Prop such that p ⊑ q and q ⊑ r. Then there exist gp, gq ∈ G∗

such that JgpK(p) = q and JgqK(q) = r. The composition of these generalizations is equal to the

concatenation of their sequences: JgqK(JgpK(p)) = Jgp; gqK(p). Furthermore, the concatenation of two

finite sequences is a finite sequence, so gp; gq ∈ G∗. As Jgp; gqK(p) = r, p ⊑ r.

9.1.4. Refinement of MIS Properties. In addition to generalization of constraints,

we are interested in refining them: adding new constraints or increasing the strictness of existing

ones. Refinements are dual to generalizations, so for each generalization we expect a corresponding

refinement. Since refinements introduce additional information, showing their soundness requires

some external justification. While we cannot automatically justify an arbitrary refinement, we can

propagate a justified refinement in one model to other models of the same system; Section 10 details

this process.

9.1.4.1. One-step refinements. Corresponding to relax_rel we have tighten_rel which

raises the bound on the reliability of component c to a higher constraint r > R(c):

tighten_rel(C,R,D)[_,_] : C → [0, 1] → Prop

tighten_rel(C,R,D)[c, r] ≜ (C,R′,D) (9.5)

where

R′(c′) ≜

r if c = c′

R(c′) otherwise
(9.5a)

82

To undo a merge, we split one component, cm, into two, c1 and c2 (where c1, c2 /∈ C \ {c}).

When splitting two components, we make each fully dependent on the other, as that is the most

general set of constraints we can generate. In other words, the result of splitp[cm → c1, c2] is the

maximal element of the set {q ∈ Prop | p = mergeq[c1, c2 → cm]}.

split(C,R,D)[_ → _,_] : C → Comps → Comps → Prop

split(C,R,D)[cm → c1, c2] ≜ (C′,R′,D′) (9.6)

where

C′ ≜ {c1, c2} ∪C \ {cm} (9.6a)

R′(c) ≜

R(cm) if c = c1 ∨ c = c2,

R(c) otherwise.
(9.6b)

D′ ≜
⋃

{s(⟨c⇝ e⟩) | ⟨c⇝ e⟩ ∈ D} (9.6c)

s(⟨c⇝ e⟩) ≜

⟨{c1, c2} ∪ c′ ⇝ e⟩

⟨{c1} ∪ c′ ⇝ e ∪ {c2}⟩

⟨{c2} ∪ c′ ⇝ e ∪ {c1}⟩

 if cm ∈ c

⟨c⇝ e′ ∪ {c1, c2}⟩

⟨c⇝ e′ ∪ {c1}⟩

⟨c⇝ e′ ∪ {c2}⟩

 if cm ∈ e

{⟨c⇝ e⟩} otherwise.

(9.6d)

c′ ≜ c \ {cm} (9.6e)

e′ ≜ e \ {cm} (9.6f)

83

The resulting dependencies can be understood as the result of applying the following rewrite

rules to dependencies in D:

⟨· · ·1 cm ⇝ · · ·2⟩ 7→

⟨· · ·1 c1c2 ⇝ · · ·2⟩

⟨· · ·1 c1 ⇝ · · ·2 c2⟩

⟨· · ·1 c2 ⇝ · · ·2 c1⟩

⟨· · ·1 ⇝ · · ·2 cm⟩ 7→

⟨· · ·1 ⇝ · · ·2 c1c2⟩

⟨· · ·1 ⇝ · · ·2 c1⟩

⟨· · ·1 ⇝ · · ·2 c2⟩

Finally, remove_dep corresponds to undoing an add_dep operation. Adding a dependency

⟨· · ·1 ⇝ e⟩ states that e depends on all of · · ·1 and therefore every dependency containing · · ·1 is

rewritten to preserve Monotonicity. Removing a dependency ⟨· · ·1 ⇝ e⟩ states that e is independent

of all components in · · ·1, so every dependency whose causes are contained in · · ·1 is rewritten.

remove_dep(C,R,D)[_⇝ _] : P(C) → C → Prop

remove_dep(C,R,D)[c⇝ e] ≜ (C,R,D′) (9.7)

where

D′ ≜ {r(⟨c′ ⇝ e′⟩) | ⟨c′ ⇝ e′⟩ ∈ D} (9.7a)

r(⟨c′ ⇝ e′⟩) ≜

⟨c′ ⇝ e′ \ {e}⟩ if c′ ⊆ c,

⟨c′ ⇝ e′⟩ otherwise.
(9.7b)

The dependencies resulting from removing the dependency ⟨· · ·1 ⇝ e⟩ follow from the rewrite

rule:

⟨· · ·2 ⇝ · · ·3 e⟩ 7→ ⟨· · ·2 ⇝ · · ·3⟩ if · · ·2 ⊆ · · ·1

9.1.4.2. Multi-step refinements. As with generalizations, let R be the set of all refinement

operations and R∗ be the set of all sequences of refinements. We abuse notation slightly to define

application of a sequence of refinements using the same notation: for rs ∈ R∗, JrsK(p) is the result of

applying that sequence of refinements to some system properties p.

84

9.1.4.3. Refinement as the dual of generalization. Each generalization operation and

its corresponding refinement are not necessarily inverses, as most generalization operations map

several elements of Prop to the same more general system (i.e., they are not injective). Thus, we do

not have that ∀g ∈ G, if q = JgK(p) then ∃r ∈ R, p = JrK(q). However, we can show the opposite: if

q = JrK(p), then p covers q: there is no r such that q ⊏ r ⊏ p.

Furthermore, the refinement operations form a dual order to the order defined by generaliza-

tion:

Theorem 9.3. ∀pr, pg ∈ Prop, pr ⊑ pg if and only if ∃rs ∈ R∗, pr = JrsK(pg).

As such, pr refines pg if pg ⊒ pr, or, equivalently, pr ⊑ pg.

9.1.5. Connecting MIS Models With Their Properties. In this section we make

explicit the Galois connection between the properties of MIS models and the models themselves.

9.1.5.1. The properties lattice. To be able to use a Galois connection to relate our

notions of generalization and refinement to MIS models, we must define Prop as a lattice. As such,

we need to define top and bottom elements of Prop, least upper bounds (or joins), and greatest

lower bounds (meets).

The top element of Prop is the one-element system with unconstrained component reliability:

⊤ ≜ ({c},R(c) = 0, {⟨c⇝ S⟩}). (9.8)

Any other one-element system constrains component reliability and thus can be generalized to

⊤ by relax_rel. Removing the one dependency results in a system that does not meet the WF

properties, and no further dependencies can be added without adding another component. Finally,

given p ∈ Prop, we can show p ⊑ ⊤ by repeatedly merging components in p until the result has one

component, then relaxing that component’s reliability bound, if necessary.

The bottom element of Prop is a special element which corresponds to an “overdeter-

mined” system—one where the constraints are contradictory. We do not concern ourselves with its

representation, but simply define it as the element ⊥ ∈ Prop such that ∀p,⊥ ⊑ p.

The join of two elements (C1,R1,D1) and (C2,R2,D2) is equal, up to renaming of compo-

nents, to (C1 ∩C2,min{R1,R2},D1 ∪D2). Joins can be computed by repeatedly applying merge to

combine components, then applying add_dep to add dependencies as needed, then applying relax_rel

85

to reduce reliabilities if necessary. The meet, likewise, is equal up to renaming of components to

(C1∪C2,max{R1,R2},D1∩D2). It can be shown that the meet can be generalized to either element

by appropriate application of merge, add_dep, and relax_rel.

9.1.5.2. MIS models. Markov Imbeddable Structure models are one approach to deriving

a system’s reliability from the reliability of its components. These models consist of states and

transitions between states caused by the failure of components. The reliability of the system is

determined by computing the probability of the system not reaching the “failed” state after considering

the effect of each component.

This paper considers MIS models where the states are defined by the components functional

in that state; e.g., 1101 corresponds to the state of a 4-component system where components 1, 2,

and 4 are functional and component 3 has failed. Components cannot repair themselves, so every

transition is either from one state to that same state or from one state to a state with more failed

components. The failed state is absorbing—once the system fails, we are no longer interested in its

behavior.

These transitions are usually represented in the form of transition probability matrices

(TPMs) Ti, one for each component. As the system always starts in the fully functional state, the

initial state probability vector is Π0 ≜ [1, 0, . . .]. Another vector u ≜ [1, . . . , 0] defines which states are

considered functional. The system reliability is given by the product of the initial state probabilities,

the TPMs, and the u vector:

R(S) ≜ ΠT
0 ∗ T1 ∗ T2 ∗ · · · ∗ Tn ∗ u (9.9)

As an example, consider the system with two components in series where R(c1) = R(c2) =

p = 1− q. The TPM for both components is given by

T1 = T2 =

p q

0 1

and the resulting system reliability is

R(S) = ΠT
0 ∗ T1 ∗ T2 ∗ u = p2

The Markov chain this system follows is illustrated in Fig 9.1 where the transitions are labeled by

the component taking them and the probability of being taken.

86

11 01 10

c1 : p c1 : q

c2 : p c2 : q

1

Figure 9.1. Two-Component series system Markov chain

9.1.5.3. Abstraction and concretization. To apply our formalization of refinement and

generalization to MIS models, we need to connect our properties domain Prop to MIS models. We

achieve this by an abstraction operator which converts system constraints to MIS models and a

concretization operator which derives constraints from MIS models.

To abstract an MIS model from (C,R,D) ∈ Prop, for each ci ∈ C let pi = 1− qi = R(ci)

be its reliability and let Ti be its TPM. Let n = |C| be the number of components in the system.

Then, begin with the initial fully-functional state 1 · · · 1 . For each dependency ⟨ci ⇝ e⟩ ∈ D, insert

a transition from 1 · · · 1 to 1 · · · 1 with probability pi in Ti and a transition from 1 · · · 1 to the state

where all components except ci and those in e are functional with probability qi in Ti. If S ∈ e,

then mark that state as “failed”. For each non-“failed” state added in the previous step, let s be the

components functional in that state and let f = C \ s be the set of failed components. For each

component ci ∈ s, select the dependency ⟨c⇝ e⟩ ∈ D where ci ∈ c and c is the largest set such that

c ⊂ f . Insert transitions from s to s with probability pi and from s to s \ e with probability

qi into Ti. For each component ci ∈ f , insert a transition from s to s with probability 1 into Ti.

Repeat this step until there are no more non-failed states to consider.

Concretizing properties from an MIS model proceeds in an analogous fashion. For each Ti

create a component ci and set R(ci) = pi. For each ci, first let s′ be the set of components functional

after ci fails from the initial 1 · · · 1 state and add a dependency ⟨ci ⇝ C \ s′⟩ to D. Then consider

all transitions in Ti from state s to state s′ where s′ ⊂ s. Let f ≜ s \ s′ \ {ci} be the set of

components that also fail as a result of the failure of ci. Take ⟨c⇝ e⟩ ∈ D where ci ∈ c and c is the

largest set such that c ⊂ (C \ s). If e ̸= f , add a dependency ⟨C \ s \ {ci}⇝ f⟩.

9.1.5.4. Example. As an example of the power of this approach, let us refine a 2-of-3

system from ⊤. Our starting system is

⊤ = ({c1},R(c1) = 0, {⟨c1 ⇝ S⟩}).

87

If we refine c1’s reliability to p by s1 = tighten_rel⊤[c1, p], the resulting system has reliability

R(S) = p.

First, we create another component via s2 = splits1 [c1 → c1, c2], we get the following system:

s2 = ({c1, c2},R(c1) = R(c2) = p, {

⟨c1 ⇝ c2,S⟩, ⟨c2 ⇝ c1,S⟩

⟨c1, c2 ⇝ S⟩

})

which abstracts to the Markov chain:

11 00c1, c2 : p
c1, c2 : q

1

This gives R(S) = p2 as we now take two steps through the Markov chain.

We can avoid adding excessive dependencies later by removing two, making c1 independent:

s3 = remove_deps2 [c1 ⇝ c2,S].5

s3 = ({c1, c2},R(c1) = R(c2) = p, {

⟨c1 ⇝ ∅⟩, ⟨c2 ⇝ c1,S⟩

⟨c1, c2 ⇝ S⟩

})

Removing these dependencies adds a new state to the Markov chain:

11

01

00c1, c2 : p
c2 : q

c1 : q

c1 : 1

c2 : p

c2 : q

c1, c2 : 1

This gives R(S) = p2 + pq—either both components remain functional, or c1 fails and c2 remains

functional.
5This is equivalent to performing two remove_dep operations, one for the dependency on c2 and one for S.

88

Next, we introduce c3 by s4 = splits3 [c2 → c2, c3].

s4 = ({c1, c2, c3},R(c1) = R(c2) = R(c3) = p, {

⟨c1 ⇝ ∅⟩, ⟨c2 ⇝ c1, c3,S⟩, ⟨c3 ⇝ c1, c2,S⟩

⟨c1, c2 ⇝ S⟩, ⟨c1, c3 ⇝ c2,S⟩, ⟨c2, c3 ⇝ c1,S⟩

})

The Markov chain is similar to the one abstracted from s3, but c3 adds its own transition probabilities.

111

011

000c1, c2, c3 : p
c2, c3 : q

c1 : q

c1 : 1

c2, c3 : p

c2, c3 : q

1

This gives R(S) = p3+ p2q—either all components remain functional, or c1 fails and c2 and c3 remain

functional.

Finally, we arrive at the desired 2-of-3 system by removing unneeded dependencies: s5 =

remove_deps4 [c2 ⇝ c1, c3,S] and s6 = remove_deps5 [c3 ⇝ c1, c2,S].

s6 = ({c1, c2, c3},R(c1) = R(c2) = R(c3) = p, {

⟨c1 ⇝ ∅⟩, ⟨c2 ⇝ ∅⟩, ⟨c3 ⇝ ∅⟩

⟨c1, c2 ⇝ S⟩, ⟨c1, c3 ⇝ c2,S⟩, ⟨c2, c3 ⇝ c1,S⟩

})

The abstracted Markov chain has two new states:

101

111 110

011 000

c1, c2, c3 : p

c1 : q

c2 : q

c3 : q c1, c2 : p

c3 : 1

c1, c2 : q

c1, c3 : p

c2 : 1

c1, c3 : q
c1 : 1

c2, c3 : p c2, c3 : q 1

This gives R(S) = p3 + 3p2q—either all components remain functional, or only one fails.

9.1.6. Superstates and Non-deterministic Choice. One problem MIS models face

is state space explosion: in a naiv̈e model where every component is independent of the others,

adding a new component doubles the number of states in the model. A solution to this problem,

89

which does not require numerical approximation methods or otherwise reduce the accuracy of the

computed result, is to allow one state to represent more than one configuration of “up” components.

In the literature, these states are referred to as superstates; we have already seen examples of these

in various failed states, such as the superstate 01 10 in Figure 9.1. Thus far, we have modeled

the “system failed” superstate in an ad-hoc fashion; we now turn to the issue of modeling arbitrary

superstates in Prop.

To motivate the following developments, we introduce an example of where superstates

become useful. Suppose we have a system with three independent components in parallel. The

system is functional as long as any single component remains functional. This reliability structure

can be represented by the following Markov chain (for readability, we elide the self-loops for each

state):

111

011 101 110

001 010 100

000

c1
: q

c
2
:
q

c
3 : q

c
2
:
q

c
3 : q c1

: q
c
3 : q c1

: q

c
2
:
q

c1
: q

c
2
:
q

c
3 : q

The corresponding element of Prop is:

sstate = ({c1, c2, c3},R(c1) = R(c2) = R(c3) = p, {

⟨c1 ⇝ ∅⟩, ⟨c2 ⇝ ∅⟩, ⟨c3 ⇝ ∅⟩

⟨c1, c2 ⇝ ∅⟩, ⟨c1, c3 ⇝ ∅⟩, ⟨c2, c3 ⇝ ∅⟩

⟨c1, c2, c3 ⇝ S⟩

})

90

This model has R(S) = p3 + 3p2q + 3pq2. This is the worst-case situation of 3 components

leading to 23 states. However, the identity of any failed component is irrelevant to the computation;

knowledge of the number of failed components suffices. We can reduce the state space of this model

by creating superstates 011 101 110 and 001 010 110 , representing one and two failed components

respectively:

111

011 101 110

001 010 100

000

c1, c2, c3 : q

c1, c2, c3 : q

c1, c2, c3 : q

In this model, we still have R(S) = p3 + 3p2q + 3pq2, but significantly fewer states and

correspondingly smaller matrices. It is also worth noting that using superstates does not require

that all components have the same reliability. Components are still considered individually when

computing reliability; however, when defining transitions between superstates, we “forget” the specific

state of a superstate which characterizes the system. If the system is in a superstate, we merely know

that it is in one of the states of that superstate.

This notion of “forgetting” maps cleanly onto the concept of non-deterministic choice, denoted

here with the ⊕ operator. Given two sets C1,C2, the value of C1⊕C2 is one of the two specified sets,

but it is unknown which set is chosen. By extending the notation of Deps to allow non-deterministic

set choices to appear in the cause of a dependency, we can represent the Markov chain:

ssuperstate = ({c1, c2, c3},R(c1) = R(c2) = R(c3) = p, {

⟨c1 ⊕ c2 ⊕ c3 ⇝ ∅⟩,

⟨c1, c2 ⊕ c1, c3 ⊕ c2, c3 ⇝ ∅⟩,

⟨c1, c2, c3 ⇝ S⟩

})

91

In the dependency ⟨c1 ⊕ c2 ⊕ c3 ⇝ ∅⟩, we know only that one of c1, c2, or c3 have failed, not

which one. This allows us to capture the notion of “one component” having failed. With this example

in hand, we can proceed to formally define and explore non-deterministic choice in Prop.

9.1.6.1. Non-deterministic choice of causes and effects. Non-deterministic choice

plays a key role in abstraction and refinement for both software and systems [93]. In the process of

deriving programs from specifications, it encodes the notion that one may pick arbitrarily among

the programs which meet a particular specification; any aspect left unspecified by the specification

is thus ambiguous. For example, given the specification “f(x) = y such that y ∗ y = x”, we may

implement f(x) by either sqrt(x) or -sqrt(x). Using the notation of non-deterministic choice, this

specification can be represented by f(x) = sqrt(x)⊕ -sqrt(x). When proving properties of f(x),

we use the demonic choice principle, which states that any statements true of a non-deterministic

choice must hold regardless of which case of the choice is taken. Thus, we cannot argue that f(x) ≥ 0,

even though that property holds for one of the cases of the choice. Effectively, the demonic choice

principle requires us to consider every case.

In this work, we will use non-deterministic choices to distinguish between sets, rather than

specifications:

Definition 9.2. Given a set of sets C = {C1,C2, · · · }, the set
⊕

C is one of the sets C1, C2, · · · .

The specific set is chosen arbitrarily. Denote
⊕

{C1,C2} by C1 ⊕C2.
⊕

{C1} = C1.
⊕

∅ has no

value.

Note that non-deterministic choices can be “flattened”; that is,

⊕{
C1,

⊕
C
}
=

⊕
{C1} ∪ C.

It follows that ⊕ is commutative and associative by commutativity and associativity of ∪. Furthermore,

C⊕C = C.

For convenience, we define a function to apply a set-valued function to each case of a

non-deterministic choice:

map⊕(f)
(⊕

C
)
=

⊕
{f(C) | C ∈ C} (9.10)

When introducing non-deterministic choice into the causes and effects of dependencies, we

must be careful to observe the demonic choice principle. Namely, once we generalize two dependencies

⟨c1 ⇝ · · ·⟩ and ⟨c2 ⇝ · · ·⟩ into ⟨c1 ⊕ c2 ⇝ · · ·⟩, erasing the distinction between the failure of c1 and

92

c2, we must ensure that all other dependencies involving c1 and c2 also “forget” which of the two has

failed. This may entail the definition of additional superstates. An analogous situation occurs when

generalizing ⟨· · ·⇝ c1⟩ and ⟨· · ·⇝ c2⟩ into ⟨· · ·⇝ c1 ⊕ c2⟩.

As an example, consider what happens in the previous example if we create the superstate

011 101 110 but leave the states 001 , 010 , and 100 as-is. This would correspond to the following

invalid properties:

ssuperstate = ({c1, c2, c3},R(c1) = R(c2) = R(c3) = p, {

⟨c1 ⊕ c2 ⊕ c3 ⇝ ∅⟩,

⟨c1, c2 ⇝ ∅⟩, ⟨c1, c3 ⇝ ∅⟩, ⟨c2, c3 ⇝ ∅⟩

⟨c1, c2, c3 ⇝ S⟩

}).

We attempt to define three transitions out of 011 101 110 , one for each component. In the case

that we consider the failure of c1, it is unclear whether the dependency ⟨c1, c2 ⇝ ∅⟩ or ⟨c1, c3 ⇝ ∅⟩

applies, since we cannot determine whether it is c2 or c3 that has failed so far. The failure of c1

in superstate 011 101 110 cannot cause two transitions, so we must instead propagate forward the

erasure of which component has failed and define a transition from 011 101 110 to 001 010 when

c1 fails. Continuing this reasoning, considering the failure of c2, we would define a transition from

011 101 110 to 010 100 . However, 010 is already a member of the superstate 001 010 , so we must

instead expand this superstate to 001 010 101 . Therefore we arrive at the result of the previous

example, with a (super)state for zero, one, two, and three failed components.

As another example, consider a four-component system with the dependency ⟨c1 ⇝ c2 ⊕ c3⟩,

where it is ambiguous which component c1 causes to fail. This corresponds to a transition from

1111 to 0011 0101 caused by the failure of c1. An invalid dependency for this system would be

⟨c1, c2, c4 ⇝ ∅⟩, as this would only cover one case of the 0011 0101 superstate. Instead, we could

write ⟨c1, c2, c4 ⊕ c1, c3, c4 ⇝ ∅⟩, which would define a transition from 0011 0101 to 0010 0100 when

c4 fails.

9.1.6.2. Well-formedness properties with non-deterministic choice. We incorporate

the requirements of the demonic choice principle into the well-formedness (WF) properties defined

in Section 9.1.1.2. Since we have
⊕

{C1} = C1, we can state all the WF properties in terms of

non-deterministic choice over a set of causes or set of effects, generalizing the properties defined

earlier.

93

For initiality, we allow the component to be part of a non-deterministic choice:

∀c ∈ C,∃⟨
⊕

C′ ⇝ · · ·⟩ ∈ D where {c} ∈ C′. (NDC-Initiality)

Termination comes with two requirements: not only must the system fail, but in any

non-deterministic choice over failures, it must fail in every one:

∃⟨· · ·⇝
⊕

E⟩ ∈ D where ∃E ∈ E ,S ∈ E and

∀⟨· · ·⇝
⊕

E⟩ ∈ D where ∃E ∈ E ,S ∈ E, then ∀E ∈ E ,S ∈ E.

(NDC-Termination)

Monotonicity must hold for some particular cause and all resulting effects:

∀⟨
⊕

{C1,C2, · · · }⇝
⊕

{E1,E2, · · · }⟩ ∈ D

∀⟨
⊕

{C1 ∪C3,C2 ∪C4, · · · }⇝
⊕

{E3,E4, · · · }⟩ ∈ D

∀E ∈ {E1,E2, · · · },∀E′ ∈ {E3,E4, · · · },

∃C′ ∈ {C3,C4, · · · },E ⊆ E′ ∪C′

(NDC-Monotonicity)

Finally, we introduce a new property to ensure that the “forgetfulness” or “erasure” of demonic

choice is preserved. Before we can state this property, we introduce a notation, overloading the

combinatorial “binomial choice” operator to work on sets. Given a set of sets C = {C1,C2, · · · ,Cn}

and an integer 0 ≤ x ≤ n, define
(C
x

)
to be the set of unions of combinations of C1, · · · ,Cn. Thus,

for example,
(
C1,C2,C3

2

)
= {C1 ∪C2,C1 ∪C3,C2 ∪C3}. Also,

(C
0

)
= ∅ and

(C
n

)
=

⋃
C.

∀⟨C1 ⊕ · · · ⊕Cn ⇝ E1 ⊕ · · · ⊕Em⟩ ∈ D

if ∃⟨
⊕

C′ ⇝ · · ·⟩ ∈ D where C1 ⊆ C′′ ∈ C′,

then C′ =

(
C1, · · · ,Cn

x

)
×
(
E1, · · · ,Em

y

)
for some 1 ≤ x ≤ n, 0 ≤ y ≤ m.

(NDC-erasure)

This rule forbids, for instance, the existence of two dependencies ⟨c1 ⊕ c2 ⇝ · · ·⟩ and

⟨c1 ⇝ · · ·⟩ and likewise given the dependency ⟨c1 ⊕ c2 ⇝ c3 ⊕ c4⟩, any dependency with c1, c3 in the

causes must be of the form ⟨c1, c3⊕c1, c4⊕c2, c3⊕c2, c4 ⇝ · · ·⟩. The associativity and commutativity

of ⊕ means this rule applies to any set of causes and effects in a non-deterministic choice.

94

9.1.6.3. Generalizations and refinements for non-deterministic choice. Introducing

a non-deterministic choice constitutes a loss of information about the model, so it is therefore a

generalization. Likewise, removing a non-deterministic choice is a refinement.

Introducing a non-deterministic choice implicitly adds dependencies as needed to meet the

WF properties. Erasing the distinction between failure of a set of components C1 and C2 is done by

replacing each instance of either with a non-deterministic choice, then adding sufficient other terms

to meet the combinatorial requirements of NDC-erasure:

unify(C,R,D)[_,_] : P(C) → P(C) → Prop

unify(C,R,D)[C1,C2] ≜ (C,R,D′) (9.11)

where

D′ ≜
{
⟨
⊕

U(C′)⇝
⊕

U(E ′)⟩
∣∣∣ ⟨⊕ C′ ⇝

⊕
E ′⟩ ∈ D

}
(9.11a)

U(C) ≜

A(C)×

(
N(C1) ∪N(C2)

x(C)

)
if C1 ⊆ C′ ∈ C or C2 ⊆ C′ ∈ C

C otherwise.
(9.11b)

A(C) ≜ {C′ \N(C1) \N(C2) | C′ ∈ C} (9.11c)

N(C1) ≜ C′ where ⟨
⊕

C′ ⇝ · · ·⟩ ∈ D and C1 ∈ C′ (9.11d)

x(C) ≜ max

{
x′

∣∣∣∣ ∃B ∈
(
N(C1) ∪N(C2)

x′

)
,B ⊆ C′ ∈ C

}
(9.11e)

Refining by splitting a non-deterministic choice splits the cases into separate dependencies

as needed, first for the causes and then for the effects:

separate(C,R,D)[_ ⊕ _] : P(C) → P(C) → Prop

separate(C,R,D)[C1 ⊕C2] ≜ (C,R,D′′) (9.12)

95

where

D′ ≜
{
SC

(
⟨
⊕

C ⇝
⊕

E⟩
) ∣∣∣ ⟨⊕ C ⇝

⊕
E⟩ ∈ D

}
(9.12a)

SC
(
⟨
⊕

C ⇝
⊕

E⟩
)
≜

⟨
⊕

{C′ ∈ C | C1 ⊆ C′ or C2 ⊈ C′}⇝
⊕

E⟩

⟨
⊕

{C′ ∈ C | C2 ⊆ C′ or C1 ⊈ C′}⇝
⊕

E⟩

 if C1 ⊆ C′ ∈ C

or C2 ⊆ C′ ∈ C

⟨
⊕

C ⇝
⊕

E⟩ otherwise.

(9.12b)

D′′ ≜
{
SE

(
⟨
⊕

C ⇝
⊕

E⟩
) ∣∣∣ ⟨⊕ C ⇝

⊕
E⟩ ∈ D′

}
(9.12c)

SE
(
⟨
⊕

C ⇝
⊕

E⟩
)
≜

⟨
⊕

C ⇝
⊕

{E′ ∈ E | C1 ⊆ E′ or C2 ⊈ E′}⟩

⟨
⊕

C ⇝
⊕

{E′ ∈ E | C2 ⊆ E′ or C1 ⊈ E′}⟩

 if C1 ⊆ E′ ∈ E

or C2 ⊆ E′ ∈ E

⟨
⊕

C ⇝
⊕

E⟩ otherwise.

(9.12d)

Consider the following example of generalization by introduction of non-deterministic choices.

We begin with a system with all components in parallel and independent except that the failure of c1

and c2 causes the failure of c3. The MIS model for this system contains the following Markov chain

(again, with self-loops elided for readability):

96

1111

1110 1011 0111 1101

1010 0110 1100 1001 0101

0100 1000 0001

0000

c
1 : qc 2

: q

c
3 : qc4

: q

c
1 : q

c
2
:
q

c
3 : q

c
1
:
q

c 2
: q

c4
: qc

1 : q

c
3 : q

c 4
: q

c
2
:
q

c
3 : qc4

: q

c
1 : q

c
3 : q

c
2
:
q

c 3
: q

c1
: q

c
2
:
q

c
1 : q

c 4
: q

c
2
:
q

c4 :
q

c
1
:
q

c
2 : q c4

: q

With the corresponding abridged properties:

s1 = ({c1, c2, c3, c4},R(c1) = R(c2) = R(c3) = R(c4) = p, {

⟨c1 ⇝ ∅⟩, ⟨c2 ⇝ ∅⟩, ⟨c3 ⇝ ∅⟩, ⟨c4 ⇝ ∅⟩,

⟨c1, c2 ⇝ c3⟩, ⟨c1, c2, c3, c4 ⇝ S⟩

}).

Suppose we generalize the system via s2 = unifys1 [c1, c2]. Transitions caused by c1 and c2

consequently align:

97

1111

1110 1011 0111 1101

1010 0110 1100 1001 0101

1000 0100 0001

0000

c 1
, c

2
:
q

c3 : qc4
: q

c 1
,c

2
:
q

c3 : q

c 1
, c

2
:
q

c4
: q

c
1 , c

2 : q

c3 : qc4
: q

c
1 , c

2 : q

c
3
:
q

c1,
c2

: q

c
1 ,c

2
:
q

c4 : q

c1 , c2 : q c4
: q

With the corresponding abridged properties:

s2 = ({c1, c2, c3, c4},R(c1) = R(c2) = R(c3) = R(c4) = p, {

⟨c1 ⊕ c2 ⇝ ∅⟩, ⟨c3 ⇝ ∅⟩, ⟨c4 ⇝ ∅⟩,

⟨c1, c2 ⇝ c3⟩, ⟨c1, c2, c3, c4 ⇝ S⟩

}).

We can see that states with components c1 and c2 are combined, and c1 and c2 share all

transitions. However, the effect of unify is more complex than merge; consider a further generalization

of s3 = unifys2 [c1, c3, c1, c4] followed by s5 = unifys4 [c2, c3, c2, c4]:

98

1111

1110 1011 0111 1101

1010 0110 1001 0101 1100

1000 0100 0001 0010

0000

c 1
, c

2
:
q

c3 : qc4
: q

c
1 , c

2 : q

c3 , c4 : q c1, c2
: q

c 4
: q

c
1 , c

2
: q

c 3
, c

4
: q

c
1 , c

2
: q

c
3 ,c

4
:
q

c1,
c2

: q

c
1 , c

2 : q c 3
, c

4
: q

With the corresponding abridged properties:

s5 = ({c1, c2, c3, c4},R(c1) = R(c2) = R(c3) = R(c4) = p, {

⟨c1 ⊕ c2 ⇝ ∅⟩, ⟨c3 ⇝ ∅⟩, ⟨c4 ⇝ ∅⟩,

⟨c1, c2 ⇝ c3 ⊕ c4⟩, ⟨c1, c2, c3 ⊕ c1, c2, c4 ⇝ ∅⟩,

⟨c1, c3 ⊕ c2, c3 ⊕ c1, c4 ⊕ c2, c4 ⇝ ∅⟩,

⟨c1, c2, c3, c4 ⇝ S⟩

}).

Of note here: c3 and c4 stay independent (states 1101 and 1110 , respectively) as long as

both c1 and c2 are functional. However, once one of c1 or c2 fails, states containing a failed c3 or c4

are merged into superstates. Thus, the behavior of this system is beyond something expressible with

merge alone. Finally, a note on refinement: separates5 [c3 ⊕ c4] would result in both dependencies

99

⟨c1, c2 ⇝ c3⟩ and ⟨c1, c2 ⇝ c4⟩, as the unify generalization erased the knowledge of which of c3 or c4

fails due to the failure of c1 and c2. The initial behavior can be refined from this model via calls to

remove_dep.

100

10. MODEL TRANSFORMATION

When creating a mathematical representation of model transformation, we may initially

conceive of it as a function that transforms models from the set Model1 to models in the set Model2

(Figure 10.1).

Model1 Model2
Transformation

Figure 10.1. Initial model transformation concept

However, this approach poses some problems. First, it is not immediately clear how to

define a transformation between some model types (for instance, transforming a system performance

model to a system dependability model); in fact, this transformation may not be definable as a

function in the mathematical sense. Second, if we have n modeling domains, in the worst case we

will have to define O(n2) transformations since we cannot expect transformations to be transitive. In

other words, transforming Model1 → Model2, then Model2 → Model3 may not be equivalent to

directly transforming Model1 → Model3.

To address the second issue, we can insert an concrete domain, Properties, of collections of

properties that describe systems. Properties can be concretized from models, and models can be

abstracted from properties. We can then formalize transforming Model1 to Model2 as shown in

Figure 10.2.

Properties

Model1 Model2

Concretization Abstraction

Figure 10.2. Transforming models through concretization and abstraction

Given a proper choice of properties domain, we can define an concretization function from

model domains to the domain of properties. However, we are not guaranteed a corresponding

abstraction function. For example, we would not expect a performance model to provide information

about the reliability of components, so we cannot abstract a unique reliability model from a

performance model.

101

However, we can cast this in terms of finding the most general model which holds for the

given properties (see Fig. 10.3). Concretizing properties from a model can be viewed as deriving

properties from just that model. Abstraction then produces all models, or a most general model,

described by a collection of properties. If a set of models is produced, the user can then select the

desired result model from this set of sound models.

Properties

Model1 Model2

Model1 Model2

Lifting lift

Concretization Abstraction

Selection

Figure 10.3. Transforming sets of models

10.1. SOUNDNESS

Given this formalization of system and model semantics, we can now formalize the problem

of model transformation. Suppose we have a properties domain and two modeling formalisms

with associated Galois connections to the properties domain (Properties, αM1 , γM1 ,Model1) and

(Properties, αM2 , γM2 ,Model2). Furthermore, we have a correctness relation RP which induces

correctness relations RM1 and RM2 .

Definition 10.1. A model transformation from Model1 to Model2 is a semantically sound mapping

τM2

M1
: Model1 → Model2. That is, if m1 ∈ Model1 is sound, then τM2

M1
(m1) is also sound.

We can define τM2

M1
by first concretizing constraints from m1 ∈ Model1, then abstracting an

element of Model2 from it.

102

Theorem 10.1. The mapping τM2

M1
(m1) = (αM2 ◦ γM1)(m1) is sound.

Proof. Take S ∈ Sys and m1 ∈ Model1.

S RM1 m1

⇐⇒ S RP γM1(m1) Defn. of RM1

=⇒ S RP (γM2 ◦ αM2 ◦ γM1)(m1) Eqn. (8.1), Prop. ((i))

⇐⇒ S RM2 (αM2 ◦ γM1)(m1) Defn. of RM2

To sum up the transformation process: begin with a model m1 ∈ Model1. Concretize

properties of the system from {m1}, then apply τM2

M1
to produce a set of models M ′

2 ⊆ Model2.

Finally, select a model from M ′
2 by introducing information about the system not present in m1.

Figure 10.4 illustrates the domains, mappings, and relationships present in this formalization

of model transformation.

S S S...
...

...
RM1 =⇒ RP =⇒ RM2...

...
...

Model1 Properties Model2γM1 αM2

τM2

M1

Figure 10.4. Sound model transformation

10.2. EXAMPLE

This example draws upon the MIS example in [10, § II.A] and [121, § 2]. For further detail

on the MIS modeling formalism, see Section 9.1.5.2.

We consider a power grid with one generator (c1), one load (c2), and two power lines (c3, c4)

connected in parallel, as shown in Figure 10.5. Defining in detail the meaning of this model is left

for the future; for now, we will view it as only encoding the components of the system and their

interconnections.

103

Generator

c1

Load
c2

c3

c4

Figure 10.5. Two-line topology example

Next we describe the MIS model of this system presented in [10, § II.A]. Each line has

reliability pL; the generator and load are assumed to not fail. The system is considered to be

functional as long as it is capable of transmitting power (at least one line is up).

The MIS model for the reliability of this system under these assumptions is given by four

basic equations. The possible states are outlined in Table 10.1; we will generally think of each state

as the set of functioning components in that state. (So S0 ≃ {l1, l2}, S1 ≃ {l1}, etc.) The initial

system state is given by Equation 10.1; this is generally of the form [1, 0, . . . , 0] in MIS reliability

modeling. Equation 10.2 defines the states which are considered functional. The matrices in 10.3

and 10.4 describe how component failure causes the system state to change. Finally, equation 10.5

puts all these pieces together into an expression for system reliability.

Π0 = [1, 0, 0, 0] (10.1)

u = [1, 1, 1, 0] (10.2)

Pl1 =

pL 0 qL 0

0 pL 0 qL

0 0 1 0

0 0 0 1

(10.3)

Pl2 =

pL qL 0 0

0 1 0 0

0 0 pL qL

0 0 0 1

(10.4)

R = ΠT
0 ∗ Pl1 ∗ Pl2 ∗ u = p2L + 2pLqL (10.5)

The Markov chain for this model is shown in Figure 10.6.

104

Table 10.1. State definition matrix

Components

States l1 l2

S0 1 1
S1 1 0
S2 0 1
S3 0 0

11

01

10

00c3, c4 : pL

c3 : qL

c4 : qL

c3 : 1
c4 : pL

c4 : qL

c3 : pL
c4 : 1

c3 : qL

1

Figure 10.6. Markov chain representation of the example MIS model

With this MIS model in mind, let us see how it can be derived, via transformation and

refinement, from the topology model mtop of Figure 10.5. We begin by concretizing an element of

Prop from this model: γtop(mtop) = ptop. This is the greatest element in Prop described by mtop.

Since our topology formalism only describes the elements of the system and their interconnections,

the most Prop can deduce from it is that the system consists of four components. Thus, ptop is

ptop = ({c1, c2, c3, c4},R(c1) = R(c2) = R(c3) = R(c4) = 0, {

⟨c1 ⇝ c2, c3, c4,S⟩, ⟨c2 ⇝ c1, c3, c4,S⟩,

⟨c3 ⇝ c1, c2, c4,S⟩, ⟨c4 ⇝ c1, c2, c3,S⟩

}).

105

In other words, all components are dependent on each other, their individual reliability is uncon-

strained, and failure of any component leads to a failure of the system. This collection of properties

can be refined from ⊤ ∈ Prop by repeatedly splitting components:

ptop = split⊤[c1 → c1, c2, c3, c4]

The MIS model abstracted from this collection of properties is as shown:

1111 0000
c1, c2, c3, c4 : 1

1

The reliability of this system is at least 0; since the component reliabilities are unconstrained, in the

worst case, they immediately fail.

At this point it is worth noting that, if our topology model were more detailed, we could

derive a more detailed ptop from it. For instance, if the topology model contained line capacities,

generator supply, load demand, and a definition of which loads are essential to serve, it would be

possible to deduce more accurate component dependencies.

Though that information is not present in the topology model we are considering, we can

introduce it to our reliability model via further refinements to ptop. We begin by refining the

component reliabilities to match our above assumptions:

p2 = tighten_relptop
[c1, c2, 1]

p3 = tighten_relp3
[c3, c4, pL]

This leads to a more representative MIS model:

1111 0000
c1, c2 : 1

c3, c4 : pL

c3, c4 : qL
1

This system’s reliability is at least p2L: both lines must not fail for the system to be up.

106

What remains is to constrain the dependencies among components to match our assumptions

about component failure: component failures are independent, and the system is functional as long

as c1, c2, and either c3 or c4 are functional. First, we eliminate dependencies among components:

p4 = remove_depp3
[c2, c3, c4 ⇝ c1]

p5 = remove_depp4
[c1, c3, c4 ⇝ c2]

p6 = remove_depp5
[c1, c2, c4 ⇝ c3]

p7 = remove_depp6
[c1, c2, c3 ⇝ c4]

The properties generated from this, p7, have a large set of Deps, but we can summarize

them as follows:

p7 ≃ ({c1, c2, c3, c4},R(c1) = R(c2) = 1;R(c3) = R(c4) = pL, {

⟨c1 ⇝ S⟩, ⟨c2 ⇝ S⟩, ⟨c3 ⇝ S⟩, ⟨c4 ⇝ S⟩

})

The MIS model abstracted from p7 has the same reliability as that of the model abstracted

from p3, since any component failure still leads to system failure. However, the Markov chain

representation of the MIS model for p7 is notably different:

1111 1110 1101
c1, c2 : 1

c3, c4 : pL

c3, c4 : qL
1

Notably, the failed state is now a superstate indicating that the system fails as soon as c3 or c4 fail,

but such failures do not lead to further component failures in the system. The 0000 state is now

unreachable.

Finally, we make system failure independent of either c3 or c4 failing:

p8 = remove_depp7
[c3 ⇝ S]

p9 = remove_depp8
[c4 ⇝ S]

Again, we can summarize p9 as follows:

p9 ≃ ({c1, c2, c3, c4},R(c1) = R(c2) = 1;R(c3) = R(c4) = pL, {

⟨c1 ⇝ S⟩, ⟨c2 ⇝ S⟩, ⟨c3 ⇝ ∅⟩, ⟨c4 ⇝ ∅⟩, ⟨c3, c4 ⇝ S⟩

})

107

The effect of these refinements is to make 1110 and 1101 states where the system is

functional and to make 1100 reachable and failed:

1111

1101

1110

1100
c1, c2 : 1

c3, c4 : pL

c3 : qL

c4 : qL

c1, c2, c3 : 1

c4 : pL

c4 : qL

c3 : pL

c1, c2, c4 : 1

c3 : qL

1

The system reliability given by the MIS model abstracted from p9 is p2L + 2pLqL, as desired. Note

that this MIS model contains strictly more information than the one shown in Figure 10.6; it contains

two extra components, but because they do not fail, they have no effect on the resulting reliability

computation. If we desired, we could generalize this model slightly by mergep7
[c1, c2, c3 → c3], which

obtains exactly the MIS model we set out to derive.

108

11. CONCLUSIONS AND FUTURE WORK

In this work, we set out to explore aspects of complex system modeling and metamodeling. We

began with an exploration of the effects of electromagnetic disturbances on control system hardware.

The goal of this project is to detect the effects of electromagnetic interference in system peripherals.

We focus on a USB host controller, which is the device responsible for all USB communication to

and from a system. The effects of two types of EMD are investigated: first electrostatic discharge,

then electromagnetic interference. We capture sequences of snapshots of a host controller’s control

registers, both when the system is operating as intended and when it is being exposed to EMD.

These sequences are processed into sequences of categorical time-series data for analysis. We divide

the data into two datasets: baseline and EMD-exposed.

First, we analyzed various properties of these datasets. These datasets can be thought of

as an execution graph, akin to a call graph as used in software analysis. Non-determinism in this

execution graph is introduced by exposure to EMD; additional graph states (nodes) and transitions

(arcs) can be found in the EMD-exposed dataset as compared to the baseline dataset. In addition,

we investigated the statistical characteristics of our datasets. The variance, as measured by the Gini

index and extropy, differed between the two datasets. Furthermore, the autocorrelation of the two

datasets differed. At a minimum, these differences allow us to conclude that our instrumentation is

capable of detecting some effects of EMD.

Second, we investigated the ability of classifiers to identify whether system operation was

indicative of EMD exposure. As an initial test, we devised a classification method which produced

promising results from the ESD datasets. We then extended this work significantly for the EMI

datasets. We devised a method for synthesizing a dataset for training classifiers from our experimental

data. Several classification approaches were evaluated: hidden Markov models, neural networks,

support vector machines, random forest classifiers, and gradient boosted classifiers. The gradient

boosted random forest classifier performed best on our sliding window classification task, reaching

92% accuracy, 92% recall, and 0.87 F1 score.

Having investigated system instrumentation and modeling, we then turned to metamodeling.

This project seeks to capture relationships between models and the properties of a system they

encode. We demonstrated a formalization of model and system semantics. Models abstract system

semantics; therefore, we can derive constraints on a system from models of it. Conversely, given

constraints on a system, we can abstract a set of models that are consistent with those constraints.

109

To formalize the soundness of this approach, we apply abstract interpretation, which defines a

correctness relation between systems and constraints. If our abstraction and concretization mappings

between a given modeling formalism and system constraints form a Galois connection between the

two domains, we can show that these mappings and the correctness relation for system constraints

induce a correctness relation between systems and the models of the modeling formalism.

A key aspect of these connections between models and properties is the ability to order the

model and property domains by specificity. This order maps cleanly onto the notion of refinement

and generalization. We demonstrated an approach to refinement and generalization of MIS reliability

models. Key to this approach is a system constraints domain, which captures the operation of a

system in an abstract, easily manipulated fashion. These constraints describe the components of

the system, their reliability, and dependencies that describe how one set of component failures can

trigger another. Given these constraints, we create generalization and refinement operators that

allow us to relax or add constraints as needed. Thus, we can simplify a system for easier evaluation

by generalizing it or we can iteratively develop one through repeated refinement. Finally, we link

these constraints to MIS reliability models, enabling us to refine or generalize models of a common

modeling formalism.

Through the lens of model abstraction and concretization, the process of model transformation

becomes the process of concretizing system properties from one model, then abstracting a second

model from these properties. We show that this process is sound; that is, if the initial model is correct,

then the final model will also be correct. This formalization of model transformation demonstrates

the utility of our metamodeling approach for proving a model manipulation sound.

The remainder of this chapter lays out ideas for bodacious projects which build on the totally

awesome work presented in this dissertation.

11.1. FUNCTIONAL MODELING OF EMD EFFECTS

One particular challenge with bringing computational intelligence techniques to bear on a

problem is collecting a large and detailed collection of data with which to create models. While our

datasets suffice for confirmation of the effectiveness of our approach, additional system characterization

is necessary for creating models which can be used for in-field monitoring. We can enhance the

data we collect with additional indicators of EMD; for example, ESD and EMI generators contain

a “trigger” output which can be correlated with the recorded register snapshots to indicate exactly

when interference was induced in the system. Another datum which can be correlated with our

110

instrumentation’s data is the power draw of the system under test: certain hardware-level effects of

EMD cause changes in power draw, such as transistor latch-up, which is caused by excessive charge

collecting on a transistor gate holding the transistor “on”.

A multitude of tools for characterizing the stochastic processes which generate our datasets

are available. In addition, models of stochastic processes may be fit to our data, allowing us to both

confirm whether system operation conforms to a model of baseline operation and to generate synthetic

datasets. The field of categorical process control charts may be applied to produce low-overhead

real-time monitors for EMD.

The data collected from our instrumentation can also be interpreted in a graph theoretic

fashion. A variety of graph-theoretic tools can thus be brought to bear on it. Various measures

of graph centrality or other graph metrics can, for example, be used to characterise operation and

validate instrumentation effectiveness. In addition, graph learning algorithms may be useful for our

classification work.

A third perspective of our data is as traces of the execution of a particular process. This

can be connected to machine learning techniques such as process discovery. In addition, logics such

as linear temporal logic can be used to specify process operation and to automatically synthesize

monitors necessary to ensure the operation meets the given specification.

Anomaly detection algorithms can also be applied to this dataset to identify sub-sequences

of EMD-exposed operation that are of interest. In particular, algorithms developed for intrusion

detection systems, which monitor the operation of network-connected systems to detect the presence

of an attacker, are a promising fit for both the categorical nature of our data and our goal of real-time

monitoring. Identified sub-sequences can also be analyzed further by hand to determine what meaning

the peripheral’s specification assigns to them. This may lead to better understanding of the path of

EMD propagation through a system or to means of mitigating or correcting EMD effects in software.

Finally, this approach can be expanded to additional system peripherals, leading to a

whole-system EMI instrumentation and detection method.

11.2. MODEL FAITHFULNESS

In our metamodeling work, we focus on the connections between models and the properties

of a system that they encode. We create methods of soundly operating on models and properties

so that these connections are preserved. However, this work does not make formal the connection

between a system and its properties or models. This connection, which is represented as S ⊢ in

111

Figure 8.1, ensures that models and properties reflect the physical system under consideration. The

analogous software relationship is the statement that a program’s text reflects both its concrete

semantics and abstract semantics. For software, this is straightforward to show: one states how the

syntax of a program is interpreted, concretely and abstractly. For systems, however, the situation is

more complex, as the physical system is not a mathematical object in the way that program syntax

is. Instead, we may envision the connection of systems to models and properties as a set of criteria

to which the system must conform, within a given tolerance. Model refinements would add tests or

tighten tolerances; model generalizations would relax the requirements. This connection in our work

relates closely to the concept of model faithfulness.

Model faithfulness — the extent to which a model corresponds to a specific physical system

— is a challenging topic for formal reasoning. Reasoning about models, software, and mathematics

together is possible as all these topics are represented in language; incorporating physical objects is

an altogether different challenge. However, this should not be reason for us to give up entirely!

Several approaches to reasoning about model faithfulness have been proposed in the literature.

Validity frames [122, 123] are one such approach based on identifying a context in which a model is

valid. For example, an Ohm’s Law model of a resistor is valid (accurate within a certain percentage

of actual operation) in a context defined by the temperature of the resistor, the voltage across and

current flowing through it, and the electrical frequency. This validity frame connects a physical

component, the resistor; experiment procedures and results, which establish the limits of the validity

frame; and models which capture the properties of the component.

A second approach, based on architectural views is proposed in [89, 91]. These views

map system components to elements of models; additional information can be added to these

mappings to indicate assumptions about component operation. Critically, the authors show that a

complete definition of assumptions about component operation is not required to perform model

validation. Thus, these views can be applied to the model faithfulness problem without requiring a

full specification of system operation.

11.3. REFINEMENT AND GENERALIZATION FOR PHYSICAL TOPOLOGY MOD-
ELS

Extending this metamodeling approach to more model formalisms increases the utility of

this paradigm for system modelers. In particular, including a modeling formalism which expresses

physical dynamics would enable changes to, e.g., a reliability model, to be soundly translated to

the physical system. Selecting a modeling language for a physical system presents several issues.

112

To simplify the formalization process, we desire to select a modeling language more high-level than

pure differential algebraic equations. In addition, the language we choose should be usable in

complex hybrid system modeling and able to capture multiple physical domains, including electrical,

mechanical, and hydraulic. Finally, we desire a language that is compact; formalizing all of Simulink

or Modelica is a daunting task!

One possible language is that of bond graphs [124]. These models describe the flow of energy

through a physical system and thus can represent components from a wide variety of domains. The

language itself is simple: graphs consisting of energy storage, transmission, and dissipation elements

connected through bonds that represent the flow of energy among these components. However, this

language does present some challenges. Multiple representations of the energy flow through the same

system are possible, so equivalent system representations will have to be accounted for in refinement

and generalization operations. In addition, bond graphs inherently take a “whole system” perspective;

creating sub-models and connecting them is not always simple [125].

Another language is that of linear graphs [126]. In these models, graph nodes are points where

components, represented as directed edges, connect. Each edge has a “through” and “across” quantity;

for electrical components, these are current and voltage, respectively. While this language eliminates

some of the ambiguity present in bond graph models and provides clear points for connecting

sub-models, it can require an unnatural choice of units in certain domains and is not as prevalent in

hybrid system modeling.

An altogether different and much simpler approach would be to formalize a simple flow-graph

representation where nodes represent components and edges the connections among them. For the

case of a power grid, nodes could represent sources, loads, and lines, each with associated supply,

capacity, or demand. Such a formalism closely follows the representation of power grids used as

input for many power grid simulators. For evaluation, we could naïvely evaluate them as flow graphs,

which would be relatively simple to formalize but not very accurate. On the other hand, these models

could be simulated using commonly used engineering tools, which would be both more accurate and

more practical, but possibly very difficult to prove sound.

APPENDIX A.

LATTICE THEORY

114

A lattice is a structure on top of a set of objects that imparts some partial ordering to those

objects. In addition, lattices can guarantee the existence of certain objects and function properties.

The order properties of lattices are commonly used to cut down the search space of certain algorithms.

Order can also be used to formalize properties of functions; both applications are used in abstract

interpretation. The discussion here is intended to provide a brief overview sufficient for description

of our model transformation approach; readers are referred to [127] for greater detail.

1. PARTIALLY ORDERED SETS

Integral to the concept of a lattice is the concept of ordering on a set:

Definition A.1. A partial ordering on a set L is a relation ⊑: L× L → {true, false} that is

1. Reflexive: l ⊑ l,∀l ∈ L

2. Transitive: If l1 ⊑ l2 and l2 ⊑ l3, then l1 ⊑ l3

3. Anti-symmetric: If l1 ⊑ l2 and l2 ⊑ l1, then l1 = l2

Definition A.2. A partially ordered set or poset (L,⊑) is a set with a partial order on it.

Sometimes we will write ⊑L when working with multiple partially ordered sets.

Partial ordering does not require that ∀l1, l2 ∈ L, l1 ⊑ l2 or l2 ⊑ l1. Such a requirement

would yield a total rather than partial ordering.

For example, the order relation ⊑ can be defined on a Cartesian coordinate system (R2) as:

(x1, y1) ⊑ (x2, y2) ⇐⇒ x1 ≤ x2 and y1 ≤ y2

With this definition, (0, 0) ⊑ (1, 2) and (0, 0) ⊑ (2, 1), but (1, 2) and (2, 1) are not comparable

using ⊑, 1 ≤ 2 but 2 ≰ 1.

Definition A.3 (Upper Bound). A set Y ⊆ L has l ∈ L as an upper bound if y ⊑ l,∀y ∈ Y . l is

a least upper bound if, for any upper bound l′, l ⊑ l′. We denote the least upper bound by
⊔
Y

(sometimes called the meet of Y).
⊔
{l1, l2} can also be written as l1 ⊔ l2.

Definition A.4 (Lower Bound). l is a lower bound of Y if l ⊑ y,∀y ∈ Y . The greatest lower bound

is defined analogously to the least upper bound. It is denoted
d
Y and sometimes called the join of

Y .

Continuing our example in R2, (0, 0) can be identified as a lower bound of {(1, 2), (2, 1)}. In

addition,
⊔
{(1, 2), (2, 1)} = (2, 2) and

⊔
{(0, 0), (0, 1), (1, 0)} = (1, 1).

115

2. LATTICES

Lattices are partially ordered sets that guarantee the existence of certain elements. This

existence is essential to building well-defined mechanisms that depend on partial orders.

Definition A.5. A lattice L is a partially ordered set where l1 ⊔ l2 and l1 ⊓ l2 are defined for all

l1, l2 ∈ L.

Definition A.6. A complete lattice L is a partially ordered set where
⊔

Y and
d

Y are defined for

all Y ⊆ L.

A consequence of A.6 is that every complete lattice has a least element, written ⊥, and a

greatest element, written ⊤. Proof: ⊥ =
d
L and ⊤ =

⊔
L are defined for all complete lattices.

Note that every finite lattice is complete.

3. FUNCTIONS ON POSETS

We will often want to relate one poset to another. As with many other mathematical

structures, we can define homomorphisms and isomorphisms between posets:

Definition A.7. A function f : P → Q between posets (P,⊑P) and (Q,⊑Q) is monotone (or

order-preserving) if

p1 ⊑1 p2 ⇒ f(p1) ⊑2 f(p2),∀p1, p2 ∈ P

As an example, let f : R2 → R2 be defined as f(x, y) = (x+ 1, y). f is monotone, as:

(x1, y1) ⊑ (x2, y2) ⇐⇒ x1 ≤ x2 ⇐⇒ x1 + 1 ≤ x2 + 1 ⇐⇒ f(x1, y1) ⊑ f(x2, y2)

Definition A.8. A function f : P → Q between posets is a order embedding (or a lattice homomor-

phism) if

p1 ⊑1 p2 ⇐⇒ f(p1) ⊑2 f(p2),∀p1, p2 ∈ P

Theorem A.1. An order-embedding is an injective (1:1) function.

Definition A.9. A function f : P → Q is an order isomporphism if f is a surjective (onto) order

embedding. That is,

p1 ⊑1 p2 ⇐⇒ f(p1) ⊑2 f(p2),∀p1, p2 ∈ P

and

∃p ∈ P such that q = f(p),∀q ∈ Q

116

Theorem A.2. If f : P1 → P2 is an order embedding between P1 and P2, then f is an order

isomporphism between P1 and f(P1).1 Note that the order operation for the poset f(P1) is the order

operation for P2 restricted to values in f(P1).

In addition to order-preserving maps, we can also have join- and meet-preserving maps

between posets:

Definition A.10. A function f : P1 → P2 between posets is additive (or a join morphism) if

f(p1 ⊔1 p2) = f(p1) ⊔2 f(p2),∀p1, p2 ∈ P1

f is completely additive if, for any Y ⊆ P1 where
⊔

1Y is defined,

f(
⊔

1Y) =
⊔

2{f(y) : y ∈ Y }

Definition A.11. A function f : P1 → P2 between posets is multiplicative (or a meet morphism) if

f(p1 ⊓1 p2) = f(p1) ⊓2 f(p2),∀p1, p2 ∈ P1

f is completely multiplicative if, for any Y ⊆ P1 where
d

1Y is defined,

f(
l

1Y) =
l

2{f(y) : y ∈ Y }

4. POWERSETS

A common complete lattice is the set of all subsets of a set S, called the powerset and

denoted P(S). (P(S),⊆) forms a complete lattice with
⊔

=
⋃

and
d

=
⋂

. ⊤ = S and ⊥ = ∅ since

every element of P(S) is a subset of S and ∅ is a subset of every set.

For example, if S = {1, 2, 3},

P(S) = {∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}

and the resulting lattice can be drawn like so2:
1f(P1) denotes the image of f in P2, i.e. {f(p) : p ∈ P1}.
2This figure is known as a Hasse diagram; a line from y down to x indicates that x < y and there is no z such that

x < z < y.

117

{1, 2, 3}

{1, 2} {1, 3} {2, 3}

{1} {2} {3}

∅

Figure A.1. The lattice for (P(S),⊆)

Now, powersets are a pretty intuitive way to think about posets, but you may be worried

that there are posets that look nothing like powersets. In fact, this is (almost) not the case!

Thinking in terms of powersets gives an intuitive mental picture of lattices, but will this

intuition always hold? First, observe that any M ⊆ P(S) also forms a poset (M,⊆). We will call

posets ordered by inclusion (⊆) inclusion posets.

Theorem A.3. Every poset is order-isomorphic to an inclusion poset.

Proof. Let (P,⊑) be a poset. For each p ∈ P , let πp = {x ∈ P : x ⊑ p}.

Let Π = {πp : p ∈ P}. Then Π ⊆ P(P) and thus (Π,⊆) is an inclusion poset.

Define f : P → Π by f(p) = πp. By our definition of πp, p1 ⊑ p2 ⇐⇒ f(p1) ⊆ f(p2).

Thus, f is an order embedding. Furthermore, if f(p1) = f(p2), then p1 ⊑ p2 and p2 ⊑ p1, so by

anti-symmetry, f is injective.

Therefore, f is an order isomorphism from P to Π.

As a consequence of this theorem, even if a poset or lattice is not an inclusion poset, we can

still think of it as one.

APPENDIX B.

GALOIS CONNECTIONS

119

A Galois connection between two posets is a relationship that is somewhat weaker than an

order-preserving isomorphism. They are commonly used to abstract information from one poset to

another with better-understood structure. Galois connections are a generalization of the connection

Evariste Galois discovered between field extensions and permutation groups.

Definition B.1. A Galois connection (P, α, γ,Q) between two posets (P,⊑P) and (Q,⊑Q), is a pair

of monotone functions α : P → Q and γ : Q → P such that

p ⊑P (γ ◦ α)(p),∀p ∈ P

(α ◦ γ)(q) ⊑Q q,∀q ∈ Q

α is sometimes called the abstraction operator and γ the concretization operator.

Definition B.1 is sometimes written λp.p ⊑ γ ◦ α and α ◦ γ ⊑ λq.q.

Note that, for any order isomorphism f : P 7→ Q, (P, f, f−1, Q) is a Galois connection.

However, α and γ are not generally inverses nor order isomorphisms.

The study of Galois connections is exactly the study of category theory’s adjunctions:

Definition B.2. An adjunction (P, α, γ,Q) between two posets (P,⊑P) and (Q,⊑Q), is a pair of

functions α : P → Q and γ : Q → P such that

α(p) ⊑Q q ⇐⇒ p ⊑P γ(q)

α is sometimes called the lower or left adjunct and γ the upper or right adjunct. This clever

naming is due to the fact that α appears on the left hand side of the order relationship and γ on the

right hand side in the definition.

Theorem B.1. (P, α, γ,Q) is a Galois connection if it is an adjunction.

So, definitions B.1 and B.2 are two ways of looking at the same relationship.

From this point on, we are going to discuss Galois connections between complete lattices.

Most of these properties can be applied to general posets, but having well-defined
d

and
⊔

operators

makes the notation far cleaner.

Theorem B.2. α uniquely determines γ by

γ(q) =
⊔

{p : α(p) ⊑ q}

120

and likewise, γ uniquely determines α by

α(p) =
l

{q : p ⊑ γ(q)}

Proof.

γ(q) =
⊔

{p : p ⊑ γ(q)} definition of γ

=
⊔

{p : α(p) ⊑ q} γ is an adjoint (Defn. B.2)

Thus, α determines γ.

If γ1 and γ2 both form Galois connections with α, then both γ1 and γ2 are defined to be

⊔
{p : α(p) ⊑ q}

and thus γ1 = γ2.

The proof for α being uniquely determined from γ is analogous.

Note that this theorem does not say that there exists a unique Galois connection between

two lattices; we may have two connections (P, α1, γ1, Q) and (P, α2, γ2, Q).

Finally, we can repeatedly abstract and then concretize without losing further detail:

Theorem B.3. α ◦ γ ◦ α = α and γ ◦ α ◦ γ = α.

Proof. We’ll use the alternate notation for Definition B.1:

λp.p ⊑ γ ◦ α Defn. B.1

⇒ α ⊑ α ◦ γ ◦ α

α ◦ γ ⊑ λm.m Defn. B.1

⇒ α ◦ γ ◦ α ⊑ α

⇒ α ◦ γ ◦ α = α Anti-symmetry

The proof for γ ◦ α ◦ γ = γ is analogous.

APPENDIX C.

ABSTRACT INTERPRETATION

122

Abstract interpretation formalizes abstraction of system semantics. These abstractions are

guaranteed to be sound, i.e., the results of the abstraction are consistent with the results of the

concrete system. Our work will apply this to models and properties of models, but this section

investigates abstract interpretation as it is usually presented.

Abstract interpretation was originally developed as a techinque to unify program analysis

techniques. In a general sense, programs nondeterministically transform inputs to outputs. More

formally, any program p transforms an initial value v1 ∈ V1 (the inputs to the program) into a final

value v2 ∈ V2 (the outputs and effects of the program). We write p ⊢ v1 ⇝ v2 if it is possible for p to

transform v1 into v2. ⇝ is almost never a function in this case; nondeterminism can allow a program

to transform one value into several final values.

1. INTERPRETATION, CONCRETELY

To facilitate analyisis, we will cast this in terms of deterministic transformation. We will

choose properties of values such that programs deterministically transform them. If a program p

transforms a property l1 ∈ L1 into a property l2 ∈ L2, we write p ⊢ l1 ▷ l2. Since ▷ is deterministic,

i.e., for any l1, there is only one l2 the program may transform it to, we can define a transformation

function fp(l1) = l2. We say that fp interprets p in terms of our chosen properties.

We connect properties to values via correctness relations Ri : Vi → Li. If a value vi is

described by a property li, we write vi Ri li. These correctness relations capture the semantics of p

with respect to the chosen properties.

The soundness of our interpretation ▷ follows from these correctness relations. ▷ is sound if,

given p ⊢ v1 ⇝ v2, p ⊢ l1 ▷ l2, and v1 R l1, then v2 R l2 as well. In other words, if a program takes an

input v1 with properties l1, transforms the value to v2, and the interpretation ▷ transforms l1 to l2,

then v2 must have properties l2.

This relationship between value transformation, property transformation, and correctness is

expressed in the diagram in Figure C.1.

p ⊢ v1 ⇝ v2

∥ ∥
R1 ⇒ R2

∥ ∥
p ⊢ l1 ▷ l2

Figure C.1. Relationship between transformation and a correctness relation

123

As an example, let us analyze plusOne : N → N defined by plusOne(n) = n + 1. Since

this program is deterministic, we could let our properties domains also be N and ▷ = plusOne.

The correctness relationships are both equality (=). This interpretation is known as the concrete

interpretation of plusOne.

While this analysis is trivially correct, it is not very informative. Let’s interpret plusOne

in terms of parity. The properties domains become P = {even,odd} and the correctness relation

is the function parityOf : N → P which assigns each natural number its associated parity (e.g.,

parityOf(2) = even). A correct interpretation fplusOne : P → P obeys the property

fplusOne(parityOf(n)) = parityOf(plusOne(n)),∀n ∈ N

and a case analysis on parityOf(n) shows that fplusOne is the function that flips parity.

While both of these interpretations are sound and useful in their own way, there is no

clear connection between them. In particular, we state that parityOf is the correctness relation

for interpretation in terms of P, but we must take this claim as an axiom. For this example, the

correctness of parityOf may seem obvious, but analyses of more complex programs and properties

will not be so simple. What we need is a means of taking an “obviously correct” correctness relation

(such as the trivial relation =) and extending this correctness to relations on more abstract property

domains. To accomplish this task, we modify our formalism slightly so that we can apply a Galois

connection.

2. LATTICES OF PROPERTIES

To take advantage of the soundness guarantees offered by a Galois connection, our properties

domain must be a lattice. Since we can choose the abstract domain as we desire, we can require that

(Li,⊑) is a complete lattice. If necessary, we can construct L from an underlying set of properties

Di by Li = P(Di). Continuing our example, we would use the property domains P(N) and P(P),

respectively.

We can constrain our correctness relations Ri : Vi → Li based on two properties of Li:

(i) If v Ri l1 and l1 ⊑ l2, then v Ri l2.

(ii) If v Ri l,∀l ∈ L′ ⊆ Li, then v Ri

d
L′.

124

(i) tells us that the smaller a property is, the more precisely (thus, better) it describes a value.

(ii) tells us that, amongst a set of properties describing a value, there uniquely exists a property that

best describes that value.

At this point, we can define representation functions βi : Vi → Li that maps values to the

best property that describes them. If β1(v1) ⊑ l1, p ⊢ v1 ⇝ v2, p ⊢ l1 ▷ l2, then β2(v2) ⊑ l2. (βi can

be defined in terms of Ri or vice-versa.) This relationship is described by the diagram in Figure C.2.

p ⊢ v1 ⇝ v2

⇒

p ⊢ l1 ▷ l2

β1 ⊑

β2 ⊑

Figure C.2. Relationship between program transformation and representation functions

For our concrete interpretation example, βN : N → P(n) is defined by βN(n) = {n}. The

correctness relations change from equality to the element relation: nRN ⇐⇒ n ∈ N .

The representation function for the parity analysis likewise maps numbers to the set containing

the parity of that number: βP(n) = {parityOf(n)}. Any parity interpretation fplusOne follows the

property

fplusOne(βP(n)) ⊇ βP(plusOne(n)),∀n ∈ N

which admits two possible interpretations: the function that flips parity and the function that always

returns P.

3. INTERPRETATION, ABSTRACTLY

We will use a Galois connection to extend a correctness relation from one properties domain

to another. Let (L,α, γ,M) be a Galois connection between two lattices, and let R : V → L be the

correctness relation for properties L. Our goal is to construct a correctness relation S : V → M

based on R, α, and γ.

Define S by v S m ⇐⇒ v R γ(m). We must show that it obeys properties (i) and (ii) of

correctness relations.

125

Proof of (i). Given v S m1 and m1 ⊑ m2,

v R γ(m1) and γ(m1) ⊑ γ(m2) Defn. of S; monotonicity of γ

v R γ(m2) Prop. (i) for R

v Sm2

Proof of (ii). Given v S m,∀m ∈ M ′ ⊆ M ,

v R γ(m),∀m ∈ M ′ Defn. of S

v R
l

{γ(m) : m ∈ M ′} Prop. (ii) for R

vRγ(
l

M ′) γ is completely multiplicative

v S
l

M ′

Therefore S is a correctness relation.

We can also show that βS = α ◦ βR is the representation function for S. All these functions

relate via the diagram in Figure C.3.

L M

V

α

γ

βR

βS

Figure C.3. Using a Galois connection to construct a representation function

To show that βP is a representation function, we will show that it is generated by a Galois

connection (P(N), α, γ,P(P)).

Define α(N) = {parityOf(n) : n ∈ N} and γ(P) = {n ∈ N : parityOf(n) ∈ P}. Then

(α ◦ βN)(n) = α({n}) = βP(n), demonstrating that βP is correct if βN is.

126

REFERENCES

[1] Antsaklis, P. J., ‘A brief introduction to the theory and applications of hybrid systems,’
Proceedings of the IEEE, July 2000, 88(7), pp. 879–887, ISSN 1558-2256, doi:10.1109/JPROC.
2000.871299, conference Name: Proceedings of the IEEE.

[2] Giri, D. V., Hoad, R., and Sabath, F., High-power electromagnetic effects on electronic systems,
Artech House, Boston London, 2020, ISBN 978-1-63081-588-2.

[3] Sun, M., Mohan, S., Sha, L., and Gunter, C., ‘Addressing safety and security contradictions in
cyber-physical systems,’ 2009.

[4] Box, G. E. P. and Draper, N. R., Empirical model-building and response surfaces, Wiley series
in probability and mathematical statistics. Applied probability and statistics, Wiley, New York,
1987, ISBN 978-0-471-81033-9.

[5] Vangheluwe, H. L. M., ‘DEVS as a common denominator for multi-formalism hybrid systems
modelling,’ in ‘CACSD. Conference Proceedings. IEEE International Symposium on Computer-
Aided Control System Design (Cat. No.00TH8537),’ September 2000 pp. 129–134, doi:10.1109/
CACSD.2000.900199.

[6] Sabatini, A., Jarus, N., Maheshwari, P., and Sedigh, S., ‘Software instrumentation for failure
analysis of USB host controllers,’ in ‘2013 IEEE International Instrumentation and Measurement
Technology Conference (I2MTC),’ May 2013 pp. 1109–1114, doi:10.1109/I2MTC.2013.6555586.

[7] Jarus, N., Sabatini, A., Maheshwari, P., and Sarvestani, S. S., ‘Software-based monitoring
and analysis of a USB host controller subject to electrostatic discharge,’ in ‘2020 CSI/CPSSI
International Symposium on Real-Time and Embedded Systems and Technologies (RTEST),’
June 2020 pp. 1–7, doi:10.1109/RTEST49666.2020.9140117.

[8] Jarus, N., Sabatini, A., Maheshwari, P., and Sedigh Sarvestani, S., ‘Detection, analysis, and
prediction of the effects of electrostatic discharge on a USB host controller,’ IEEE Transactions
on Electromagnetic Compatibility, 2020, submitted.

[9] Jarus, N., Schott, J., Klingbeil, L., and Sedigh Sarvestani, S., ‘Observation, analysis, modeling,
and classification of USB host controller operation under electro-magnetic interference,’ IEEE
Transactions on Electromagnetic Compatibility, 2021, in preparation.

[10] Albasrawi, M. N., Jarus, N., Joshi, K. A., and Sarvestani, S. S., ‘Analysis of reliability and
resilience for smart grids,’ in ‘Computer Software and Applications Conference (COMPSAC),
2014 IEEE 38th Annual,’ IEEE, 2014 pp. 529–534, doi:10.1109/COMPSAC.2014.75.

[11] Jarus, N., Sarvestani, S. S., and Hurson, A. R., ‘Models, metamodels, and model transformation
for cyber-physical systems,’ in ‘Seventh International Green and Sustainable Computing
Conference (IGSC),’ IEEE, 2016 pp. 1–8.

[12] Jarus, N., Sarvestani, S. S., and Hurson, A. R., ‘Facilitating model–based design and evaluation
for sustainability,’ in ‘2018 Ninth International Green and Sustainable Computing Conference
(IGSC),’ October 2018 pp. 1–2, doi:10.1109/IGCC.2018.8752119.

[13] Jarus, N., Sedigh Sarvestani, S., and Hurson, A. R., ‘Formalizing cyber–physical system model
transformation via abstract interpretation,’ in ‘2019 IEEE 19th International Symposium on
High Assurance Systems Engineering (HASE),’ January 2019 pp. 107–114, doi:10.1109/HASE.
2019.00025.

[14] Jarus, N., Sarvestani, S. S., and Hurson, A. R., ‘Towards refinement and generalization of
reliability models based on component states,’ in ‘2019 Resilience Week (RWS),’ volume 1,
November 2019 pp. 153–159, doi:10.1109/RWS47064.2019.8971824.

127

[15] Cousot, P. and Cousot, R., ‘Abstract interpretation: a unified lattice model for static analysis
of programs by construction or approximation of fixpoints,’ in ‘Proceedings of the 4th ACM
SIGACT-SIGPLAN symposium on Principles of programming languages,’ ACM, 1977 pp.
238–252.

[16] Jarus, N., Woodard, M., Marashi, K., Sedigh Sarvestani, S., Lin, J., Faza, A. Z., and Maheshwari,
P., ‘Survey on modeling and design of cyber-physical systems,’ ACM Trans. Cyber-Phys. Syst.,
2020, under review.

[17] White Paper 3, System Level ESD, Part II: Implementation of Effective ESD Robust Designs,
Industry Council on ESD Target Levels, March 2019.

[18] Maheshwari, P., Li, T., Lee, J., Seol, B., Sedigh, S., and Pommerenke, D., ‘Software-based
analysis of the effects of electrostatic discharge on embedded systems,’ in ‘IEEE Computer
Software and Applications Conference (COMPSAC),’ ISSN 0730-3157, July 2011 pp. 436 – 441,
doi:10.1109/COMPSAC.2011.64.

[19] Kim, K. H. and Kim, Y., ‘Systematic analysis methodology for mobile phone’s electrostatic
discharge soft failures,’ IEEE Transactions on Electromagnetic Compatibility, Aug 2011, 53(3),
pp. 611–618, ISSN 0018-9375, doi:10.1109/TEMC.2011.2143719.

[20] Schwingshackl, T., Orr, B., Willemen, J., Simburger, W., Gossner, H., Bosch, W., and
Pommerenke, D., ‘Powered system-level conductive TLP probing method for ESD/EMI hard
fail and soft fail threshold evaluation,’ in ‘2013 35th Electrical Overstress/Electrostatic Discharge
Symposium (EOS/ESD),’ ISSN 0739-5159, Sept 2013 pp. 1–8.

[21] Izadi, O. H., Hosseinbeig, A., Pommerenke, D., Shumiya, H., Maeshima, J., and Araki, K.,
‘Systematic analysis of ESD-induced soft-failures as a function of operating conditions,’ in
‘2018 IEEE International Symposium on Electromagnetic Compatibility and 2018 IEEE Asia-
Pacific Symposium on Electromagnetic Compatibility (EMC/APEMC),’ May 2018 pp. 286–291,
doi:10.1109/ISEMC.2018.8393784.

[22] Vora, S., Jiang, R., Vasudevan, S., and Rosenbaum, E., ‘Application level investigation of system-
level ESD-induced soft failures,’ in ‘2016 38th Electrical Overstress/Electrostatic Discharge
Symposium (EOS/ESD),’ September 2016 pp. 1–10, doi:10.1109/EOSESD.2016.7592565.

[23] Vora, S., Jiang, R., Vijayaraj, P. M., Feng, K., Xiu, Y., Vasudevan, S., and Rosenbaum, E.,
‘Hardware and software combined detection of system-level ESD-induced soft failures,’ in ‘2018
40th Electrical Overstress/Electrostatic Discharge Symposium (EOS/ESD),’ September 2018
pp. 1–10, doi:10.23919/EOS/ESD.2018.8509783.

[24] Feng, K., Vora, S., Jiang, R., Rosenbaum, E., and Vasudevan, S., ‘Guilty as charged: Com-
putational reliability threats posed by electrostatic discharge-induced soft errors,’ in ‘2019
Design, Automation Test in Europe Conference Exhibition (DATE),’ March 2019 pp. 156–161,
doi:10.23919/DATE.2019.8715149.

[25] Maghlakelidze, G., Wei, P., Huang, W., Gossner, H., and Pommerenke, D., ‘Pin specific
ESD soft failure characterization using a fully automated set-up,’ in ‘2018 40th Electrical
Overstress/Electrostatic Discharge Symposium (EOS/ESD),’ September 2018 pp. 1–9, doi:
10.23919/EOS/ESD.2018.8509693.

[26] Koch, S., Orr, B. J., Gossner, H., Gieser, H. A., and Maurer, L., ‘Identification of soft failure
mechanisms triggered by ESD stress on a powered USB 3.0 interface,’ IEEE Transactions
on Electromagnetic Compatibility, February 2019, 61(1), pp. 20–28, ISSN 0018-9375, doi:
10.1109/TEMC.2018.2811645.

128

[27] Yuan, S.-Y., Wu, Y.-L., Perdriau, R., and Liao, S.-S., ‘Detection of electromagnetic interference
in microcontrollers using the instability of an embedded phase-lock loop,’ IEEE Transactions
on Electromagnetic Compatibility, April 2013, 55(2), pp. 299–306, ISSN 0018-9375, doi:
10.1109/TEMC.2012.2218285.

[28] Liu, X., Izadi, O. H., Maghlakelidze, G., Pommerenke, M., and Pommerenke, D., ‘A preliminary
study of ESD effects on the process calls tree of a wireless router,’ in ‘2018 IEEE Symposium
on Electromagnetic Compatibility, Signal Integrity and Power Integrity (EMC, SI & PI),’ July
2018 pp. 408–413, doi:10.1109/EMCSI.2018.8495346.

[29] Sabath, F., ‘Classification of electromagnetic effects at system level,’ in F. Sabath, D. Giri,
F. Rachidi, and A. Kaelin, editors, ‘Ultra-Wideband, Short Pulse Electromagnetics 9,’ pp. 325–
333, Springer, New York, NY, ISBN 978-0-387-77845-7, 2010, doi:10.1007/978-0-387-77845-7_
38.

[30] Liang, T., Spadacini, G., Grassi, F., and Pignari, S. A., ‘Worst-case scenarios of radiated-
susceptibility effects in a multiport system subject to intentional electromagnetic interference,’
IEEE Access, 2019, 7, pp. 76500–76512, ISSN 2169-3536, doi:10.1109/ACCESS.2019.2921117.

[31] Guillette, D. S., Clarke, T. J., and Christodoulou, C., ‘Intentional electromagnetic irradiation
of a microcontroller,’ in ‘2019 International Conference on Electromagnetics in Advanced
Applications (ICEAA),’ September 2019 pp. 1214–1218, doi:10.1109/ICEAA.2019.8879257.

[32] Burghardt, F. and Garbe, H., ‘Effects of conducted interference on a microcontroller based
on IEC 62132-4 and IEC 62215-3,’ in ‘2020 International Symposium on Electromagnetic
Compatibility — EMC EUROPE,’ September 2020 pp. 1–5, doi:10.1109/EMCEUROPE48519.
2020.9245782, iSSN: 2325-0364.

[33] Bai, J., Shi, Y., and Zhao, G., ‘Research on electromagnetic interference of vehicle GPS naviga-
tion equipment,’ in ‘2017 IEEE 5th International Symposium on Electromagnetic Compatibility
(EMC-Beijing),’ October 2017 pp. 1–5, doi:10.1109/EMC-B.2017.8260366.

[34] Camp, M., Schmitz, J., and Jung, M., ‘Vulnerability and coupling behaviour of a TETRA
communication system to electromagnetic fields,’ in ‘2015 IEEE International Symposium on
Electromagnetic Compatibility (EMC),’ August 2015 pp. 344–349, doi:10.1109/ISEMC.2015.
7256184.

[35] Lanzrath, M., Adami, C., Joerres, B., Lubkowski, G., Joester, M., Suhrke, M., and Pusch, T.,
‘HPEM vulnerability of smart grid substations coupling paths into typical SCADA devices,’
in ‘2017 International Symposium on Electromagnetic Compatibility — EMC EUROPE,’
September 2017 pp. 1–6, doi:10.1109/EMCEurope.2017.8094632.

[36] Mao, C., Canavero, F. G., Cui, Z., and Sun, D., ‘System-level vulnerability assessment for EME:
From fault tree analysis to bayesian networks—part II: Illustration to microcontroller system,’
IEEE Transactions on Electromagnetic Compatibility, February 2016, 58(1), pp. 188–196, ISSN
0018-9375, doi:10.1109/TEMC.2015.2502591.

[37] Parfenov, Y. V., Titov, B. A., Zdoukhov, L. N., and Radasky, W. A., ‘About the assessment of
electronic device immunity to high power electromagnetic pulses,’ in ‘2015 7th Asia-Pacific
Conference on Environmental Electromagnetics (CEEM),’ November 2015 pp. 428–431, doi:
10.1109/CEEM.2015.7368616.

[38] Armstrong, K. and Radasky, W. A., ‘Extending the normal immunity tests to help prove
functional safety,’ in ‘2018 IEEE International Symposium on Electromagnetic Compatibility
and 2018 IEEE Asia-Pacific Symposium on Electromagnetic Compatibility (EMC/APEMC),’
May 2018 pp. 221–226, doi:10.1109/ISEMC.2018.8393770.

129

[39] Radasky, W. A., ‘The role of electromagnetic shielding in dealing with the threat of Intentional
Electromagnetic Interference (IEMI),’ in ‘2015 International Conference on Electromagnetics
in Advanced Applications (ICEAA),’ September 2015 pp. 1145–1148, doi:10.1109/ICEAA.2015.
7297298.

[40] Giri, D. V., Hoad, R., and Sabath, F., ‘Implications of high-power electromagnetic (HPEM)
environments on electronics,’ IEEE Electromagnetic Compatibility Magazine, 2020, 9(2), pp.
37–44, ISSN 2162-2272, doi:10.1109/MEMC.2020.9133238.

[41] Kasmi, C., Lopes-Esteves, J., Picard, N., Renard, M., Beillard, B., Martinod, E., Andrieu, J.,
and Lalande, M., ‘Event logs generated by an operating system running on a COTS computer
during IEMI exposure,’ IEEE Transactions on Electromagnetic Compatibility, December 2014,
56(6), pp. 1723–1726, ISSN 1558-187X, doi:10.1109/TEMC.2014.2357060.

[42] Lopes-Esteves, J., Cottais, E., and Kasmi, C., ‘Software instrumentation of an unmanned
aerial vehicle for HPEM effects detection,’ in ‘2018 2nd URSI Atlantic Radio Science Meeting
(AT-RASC),’ May 2018 pp. 1–4, doi:10.23919/URSI-AT-RASC.2018.8471395.

[43] Kasmi, C., Lopes-Esteves, J., and Renard, M., ‘Autonomous electromagnetic attacks de-
tection considering a COTS computer as a multi-sensor system,’ in ‘2014 XXXIth URSI
General Assembly and Scientific Symposium (URSI GASS),’ August 2014 pp. 1–4, doi:
10.1109/URSIGASS.2014.6929512.

[44] Liu, X., Maghlakelidze, G., Zhou, J., Izadi, O. H., Shen, L., Pommerenke, M., Ge, S. S., and
Pommerenke, D., ‘Detection of ESD-induced soft failures by analyzing Linux kernel function
calls,’ IEEE Transactions on Device and Materials Reliability, March 2020, 20(1), pp. 128–135,
ISSN 1558-2574, doi:10.1109/TDMR.2020.2965205.

[45] Watterson, C. and Heffernan, D., ‘Runtime verification and monitoring of embedded systems,’
Software, IET, 2007, 1(5), pp. 172–179, ISSN 1751-8806, doi:10.1049/iet-sen:20060076.

[46] Delgado, N., Gates, A., and Roach, S., ‘A taxonomy and catalog of runtime software-fault
monitoring tools,’ IEEE Transactions on Software Engineering, 2004, 30(12), pp. 859–872,
ISSN 0098-5589, doi:10.1109/TSE.2004.91.

[47] Choudhuri, S. and Givargis, T., ‘FlashBox: a system for logging non-deterministic events in
deployed embedded systems.’ in S. Y. Shin and S. Ossowski, editors, ‘Proceedings of the 2009
ACM symposium on Applied Computing (SAC),’ ACM, ISBN 978-1-60558-166-8, 2009 pp.
1676–1682.

[48] Reinbacher, T., Horauer, M., and Steininger, A., ‘A runtime verification unit for microcon-
trollers,’ in ‘System, Software, SoC and Silicon Debug Conference (S4D),’ ISSN 2114-3684,
September 2012 p. 1 – 6.

[49] Kitagawa, Y., Ishigooka, T., and Azumi, T., ‘Anomaly prediction based on machine learning for
memory-constrained devices,’ IEICE Transactions on Information and Systems, September 2019,
E102.D(9), pp. 1797–1807, ISSN 0916-8532, 1745-1361, doi:10.1587/transinf.2018EDP7339.

[50] Li, Y., Xue, W., Wu, T., Wang, H., Zhou, B., Aziz, S., and He, Y., ‘Intrusion detection of
cyber physical energy system based on multivariate ensemble classification,’ Energy, December
2020, p. 119505, ISSN 0360-5442, doi:10.1016/j.energy.2020.119505.

[51] Zoppi, T., Ceccarelli, A., and Bondavalli, A., ‘MADneSs: a Multi-layer Anomaly Detection
Framework for Complex Dynamic Systems,’ IEEE Transactions on Dependable and Secure
Computing, 2019, pp. 1–1, ISSN 1545-5971, doi:10.1109/TDSC.2019.2908366.

[52] Alam, M., Bhattacharya, S., and Mukhopadhyay, D., ‘Victims can be saviors: A machine
learning-based detection for micro-architectural side-channel attacks,’ ACM Journal on Emerg-
ing Technologies in Computing Systems, January 2021, 17(2), pp. 14:1–14:31, ISSN 1550-4832,
doi:10.1145/3439189.

130

[53] ‘edwinrong/myregrw,’ https://github.com/edwinrong/myregrw, 2009, accessed: 2020-01-20.

[54] Intel Corporation, ‘Enhanced host controller interface specification for universal serial bus,’
2001.

[55] ‘Downloads — FriendlyArm,’ http://dl.friendlyarm.com/mini2440, 2012, accessed: 2020-
01-20.

[56] OpenHCI: Open host controller interface specification for USB, Compaq, Microsoft, and National
Semiconductor, October 2000, release: 1.0a.

[57] Izadi, O. H., Frazier, R. K., Altunyurt, N., Sedigh Sarvestani, S., Pommerenke, D., and Hwang,
C., ‘A new tunable damped sine-like waveform generator for IEMI applications,’ in ‘2020 IEEE
International Symposium on Electromagnetic Compatibility Signal/Power Integrity (EMCSI),’
July 2020 pp. 282–286, doi:10.1109/EMCSI38923.2020.9191504.

[58] Weiß, C. H., An introduction to discrete-valued time series, John Wiley & Sons, Hoboken, NJ,
2017, ISBN 978-1-119-09698-6 978-1-119-09699-3.

[59] Lad, F., Sanfilippo, G., and Agrò, G., ‘Extropy: Complementary dual of Entropy,’ Statistical
Science, February 2015, 30(1), pp. 40–58, ISSN 0883-4237, 2168-8745, doi:10.1214/14-STS430.

[60] Weiß, C. H., ‘Measures of dispersion and serial dependence in categorical time series,’ Econo-
metrics, June 2019, 7(2), p. 17, doi:10.3390/econometrics7020017.

[61] Lee, E. A. and Sirjani, M., ‘What good are models?’ in K. Bae and P. C. Ölveczky, edi-
tors, ‘Formal Aspects of Component Software,’ Lecture Notes in Computer Science, Springer
International Publishing, ISBN 978-3-030-02146-7, 2018 pp. 3–31.

[62] Zeigler, B. P., Muzy, A., and Kofman, E., Theory of Modeling and Simulation: Discrete Event
& Iterative System Computational Foundations, Academic Press, 2nd edition, 2000, ISBN
978-0-12-778455-1.

[63] Manna, Z. and Pnueli, A., ‘On the faithfulness of formal models,’ in G. Goos, J. Hartmanis, and
A. Tarlecki, editors, ‘Mathematical Foundations of Computer Science 1991,’ volume 520, pp. 28–
42, Springer Berlin Heidelberg, Berlin, Heidelberg, ISBN 978-3-540-54345-9 978-3-540-47579-8,
1991, doi:10.1007/3-540-54345-7_46, series Title: Lecture Notes in Computer Science.

[64] Fatehah, M., Mezhuyev, V., and Al-Emran, M., ‘A systematic review of metamodelling in
software engineering,’ in M. Al-Emran, K. Shaalan, and A. E. Hassanien, editors, ‘Recent
Advances in Intelligent Systems and Smart Applications,’ Studies in Systems, Decision and
Control, pp. 3–27, Springer International Publishing, Cham, ISBN 978-3-030-47411-9, 2021,
doi:10.1007/978-3-030-47411-9_1.

[65] Montecchi, L., Lollini, P., and Bondavalli, A., ‘A reusable modular toolchain for automated
dependability evaluation,’ in ‘Proceedings of the 7th International Conference on Performance
Evaluation Methodologies and Tools,’ ICST (Institute for Computer Sciences, Social-Informatics
and Telecommunications Engineering), 2013 pp. 298–303.

[66] Bonfiglio, V., Montecchi, L., Rossi, F., Lollini, P., Pataricza, A., and Bondavalli, A., ‘Executable
models to Support Automated Software FMEA,’ IEEE, ISBN 978-1-4799-8111-3 978-1-4799-
8110-6, January 2015 pp. 189–196, doi:10.1109/HASE.2015.36.

[67] De Lara, J. and Vangheluwe, H., ‘AToMˆ3: A tool for multi-formalism and meta-modelling,’ in
‘FASE,’ volume 2, Springer, 2002 pp. 174–188.

[68] Vangheluwe, H., De Lara, J., and Mosterman, P. J., ‘An introduction to multi-paradigm
modelling and simulation,’ in ‘Proceedings of the AIS’2002 conference (AI, Simulation and
Planning in High Autonomy Systems), Lisboa, Portugal,’ 2002 pp. 9–20.

https://github.com/edwinrong/myregrw
http://dl.friendlyarm.com/mini2440

131

[69] Vittorini, V., Iacono, M., Mazzocca, N., and Franceschinis, G., ‘The OsMoSys approach to
multi-formalism modeling of systems,’ Software and Systems Modeling, November 2003, 3(1),
pp. 68–81, ISSN 1619-1366, 1619-1374, doi:10.1007/s10270-003-0039-5.

[70] Franceschinis, G., Gribaudo, M., Iacono, M., Mazzocca, N., and Vittorini, V., ‘Towards an
object based multi-formalism multi-solution modeling approach,’ Proceedings of the Second
Workshop on Modelling of Objects, Components and Agents Aarhus (MOCA02), Denmark,
2002, 26(27), pp. 47–65.

[71] Marco, G., Mazzocca, N., Francesco, M., and Vittorini, V., ‘Multisolution of complex per-
formability models in the OsMoSys/DrawNET framework,’ in ‘Second International Con-
ference on the Quantitative Evaluation of Systems (QEST’05),’ September 2005 pp. 85–94,
doi:10.1109/QEST.2005.22.

[72] Iacono, M., Gribaudo, M., and Barbierato, E., ‘Exploiting multiformalism models for testing
and performance evaluation in SIMTHESys,’ ACM, ISBN 978-1-936968-09-1, 2011 doi:10.4108/
icst.valuetools.2011.245727.

[73] Iacono, M. and Gribaudo, M., ‘Element based semantics in multi formalism performance models,’
in ‘2010 IEEE International Symposium on Modeling, Analysis and Simulation of Computer
and Telecommunication Systems,’ August 2010 pp. 413–416, doi:10.1109/MASCOTS.2010.54,
iSSN: 2375-0227.

[74] Barbierato, E., Gribaudo, M., and Iacono, M., ‘Modeling hybrid systems in SIMTHESys,’
Electronic Notes in Theoretical Computer Science, October 2016, 327, pp. 5–25, ISSN 15710661,
doi:10.1016/j.entcs.2016.09.021.

[75] Barbierato, E., Gribaudo, M., and Iacono, M., ‘Simulating hybrid systems within SIMTHESys
multi-formalism models,’ in D. Fiems, M. Paolieri, and A. N. Platis, editors, ‘Computer Perfor-
mance Engineering,’ Lecture Notes in Computer Science, Springer International Publishing,
Cham, ISBN 978-3-319-46433-6, 2016 pp. 189–203, doi:10.1007/978-3-319-46433-6_13.

[76] Clark, G., Courtney, T., Daly, D., Deavours, D., Derisavi, S., Doyle, J., Sanders, W., and
Webster, P., ‘The Möbius modeling tool,’ in ‘9th International Workshop on Petri Nets and
Performance Models,’ 2001 pp. 241–250, doi:10.1109/PNPM.2001.953373.

[77] Gaonkar, S., Keefe, K., Lamprecht, R., Rozier, E., Kemper, P., and Sanders, W. H., ‘Per-
formance and dependability modeling with Möbius,’ SIGMETRICS Performance Evaluation
Review, March 2009, 36(4), pp. 16–21, ISSN 0163-5999, doi:10.1145/1530873.1530878.

[78] Deavours, D. and Sanders, W., ‘Mobius: framework and atomic models,’ in ‘Proceedings 9th
International Workshop on Petri Nets and Performance Models,’ IEEE Comput. Soc, Aachen,
Germany, ISBN 978-0-7695-1248-8, 2001 pp. 251–260, doi:10.1109/PNPM.2001.953374.

[79] Ptolemaeus, C., editor, System design, modeling, and simulation: using Ptolemy II, UC
Berkeley EECS Dept, Berkeley, Calif, 1. ed., version 1.02 edition, 2014, ISBN 978-1-304-42106-7
978-1-304-42106-7.

[80] Goderis, A., Brooks, C., Altintas, I., Lee, E. A., and Goble, C., ‘Heterogeneous composition of
models of computation,’ Future Generation Computer Systems, May 2009, 25(5), pp. 552–560,
ISSN 0167-739X, doi:10.1016/j.future.2008.06.014.

[81] Lee, E. A. and Zheng, H., ‘Leveraging synchronous language principles for heterogeneous
modeling and design of embedded systems,’ in ‘Proceedings of the 7th ACM & IEEE in-
ternational conference on Embedded software,’ EMSOFT ’07, Association for Computing
Machinery, New York, NY, USA, ISBN 978-1-59593-825-1, September 2007 pp. 114–123,
doi:10.1145/1289927.1289949.

132

[82] Larsen, P. G., Fitzgerald, J., Woodcock, J., Fritzson, P., Brauer, J., Kleijn, C., Lecomte, T.,
Pfeil, M., Green, O., Basagiannis, S., and Sadovykh, A., ‘Integrated tool chain for model-based
design of cyber-physical systems: The INTO-CPS project,’ in ‘2016 2nd International Workshop
on Modelling, Analysis, and Control of Complex CPS (CPS Data),’ IEEE, Vienna, Austria,
ISBN 978-1-5090-1154-4, April 2016 pp. 1–6, doi:10.1109/CPSData.2016.7496424.

[83] Hasanagić, M., Tran-Jørgensen, P. W. V., Lausdahl, K., and Larsen, P. G., ‘Formalising
and validating the interface description in the FMI standard,’ in J. Fitzgerald, C. Heitmeyer,
S. Gnesi, and A. Philippou, editors, ‘FM 2016: Formal Methods,’ Lecture Notes in Computer
Science, Springer International Publishing, Cham, ISBN 978-3-319-48989-6, 2016 pp. 344–351,
doi:10.1007/978-3-319-48989-6_21.

[84] Foster, S., Thiele, B., Cavalcanti, A., and Woodcock, J., ‘Towards a UTP semantics for Modelica,’
in J. P. Bowen and H. Zhu, editors, ‘Unifying Theories of Programming,’ volume 10134, pp.
44–64, Springer International Publishing, Cham, ISBN 978-3-319-52227-2 978-3-319-52228-9,
2017, doi:10.1007/978-3-319-52228-9_3.

[85] Thule, C., Gomes, C., Deantoni, J., Larsen, P. G., Brauer, J., and Vangheluwe, H., ‘Towards
the verification of hybrid co-simulation algorithms,’ in M. Mazzara, I. Ober, and G. Salaün,
editors, ‘Software Technologies: Applications and Foundations,’ volume 11176, pp. 5–20,
Springer International Publishing, Cham, ISBN 978-3-030-04770-2 978-3-030-04771-9, 2018,
doi:10.1007/978-3-030-04771-9_1.

[86] Thule, C., ‘Verifying the co-simulation orchestration engine for INTO-CPS,’ in ‘Proc. Of 21st
International Symposium on Formal Methods,’ CEUR-WS, Limassol, Cyprus, 2016 p. 6.

[87] Zeyda, F., Ouy, J., Foster, S., and Cavalcanti, A., ‘Formalising cosimulation models,’ in
A. Cerone and M. Roveri, editors, ‘Software Engineering and Formal Methods,’ volume 10729,
pp. 453–468, Springer International Publishing, Cham, ISBN 978-3-319-74780-4 978-3-319-
74781-1, 2018, doi:10.1007/978-3-319-74781-1_31.

[88] Bhave, A., Krogh, B., Garlan, D., and Schmerl, B., ‘Multi-domain modeling of CPS using
architectural views,’ in ‘Proceedings of the First Analytic Virtual Integration of Cyber-Physical
Systems Workshop,’ IEEE Computer Society, San Diego, CA, USA, 2010 pp. 51–58.

[89] Bhave, A., Krogh, B. H., Garlan, D., and Schmerl, B., ‘View consistency in architectures
for cyber-physical systems,’ in ‘2011 IEEE/ACM Second International Conference on Cyber-
Physical Systems,’ April 2011 pp. 151–160, doi:10.1109/ICCPS.2011.17.

[90] Rajhans, A., Bhave, A., Loos, S., Krogh, B. H., Platzer, A., and Garlan, D., ‘Using parameters
in architectural views to support heterogeneous design and verification,’ in ‘2011 50th IEEE
Conference on Decision and Control and European Control Conference,’ December 2011 pp.
2705–2710, doi:10.1109/CDC.2011.6161408.

[91] Rajhans, A., Bhave, A., Ruchkin, I., Krogh, B. H., Garlan, D., Platzer, A., and Schmerl,
B., ‘Supporting heterogeneity in cyber-physical systems architectures,’ IEEE Transactions on
Automatic Control, December 2014, 59(12), pp. 3178–3193, ISSN 1558-2523, doi:10.1109/TAC.
2014.2351672.

[92] Morgan, C., Programming from Specifications, Prentice Hall international series in computer
science, Prentice Hall, 1990, ISBN 0-13-726225-6.

[93] McIver, A. and Morgan, C., Abstraction, Refinement, and Proof for Probabilistic Systems,
Springer monographs in computer science, Springer Science + Business Media Inc., 2005, ISBN
0-387-40115-6.

[94] Gulwani, S., Polozov, O., and Singh, R., ‘Program synthesis,’ Foundations and Trends in
Programming Languages, July 2017, 4(1-2), pp. 1–119, ISSN 2325-1107, 2325-1131, doi:
10.1561/2500000010.

133

[95] Röttger, S. and Zschaler, S., ‘Tool support for refinement of non-functional specifications,’
Software & Systems Modeling, June 2007, 6(2), pp. 185–204, ISSN 1619-1366, 1619-1374,
doi:10.1007/s10270-006-0024-x.

[96] Abrial, J.-R., Su, W., and Zhu, H., ‘Formalizing hybrid systems with Event-B,’ in J. Derrick,
J. Fitzgerald, S. Gnesi, S. Khurshid, M. Leuschel, S. Reeves, and E. Riccobene, editors, ‘Abstract
State Machines, Alloy, B, VDM, and Z,’ Lecture Notes in Computer Science, Springer, Berlin,
Heidelberg, ISBN 978-3-642-30885-7, 2012 pp. 178–193, doi:10.1007/978-3-642-30885-7_13.

[97] Dupont, G., Aït-Ameur, Y., Pantel, M., and Singh, N. K., ‘Formally verified architecture
patterns of hybrid systems using proof and refinement with Event-B,’ in A. Raschke, D. Méry,
and F. Houdek, editors, ‘Rigorous State-Based Methods,’ Lecture Notes in Computer Science,
Springer International Publishing, Cham, ISBN 978-3-030-48077-6, 2020 pp. 169–185, doi:
10.1007/978-3-030-48077-6_12.

[98] Zhao, Y., Sanán, D., Zhang, F., and Liu, Y., ‘Formal specification and analysis of partitioning
operating systems by integrating ontology and refinement,’ IEEE Transactions on Industrial
Informatics, August 2016, 12(4), pp. 1321–1331, ISSN 1941-0050, doi:10.1109/TII.2016.2569414.

[99] André, P., Attiogbé, C., and Lanoix, A., ‘A tool-assisted method for the systematic construction
of critical embedded systems using Event-B,’ Computer Science and Information Systems, 2020,
17(1), pp. 315–338, ISSN 1820-0214, 2406-1018, doi:10.2298/CSIS190501042A.

[100] Méry, D. and Singh, N. K., ‘Formal specification of medical systems by proof-based refinement,’
ACM Trans. Embed. Comput. Syst., January 2013, 12(1), pp. 15:1–15:25, ISSN 1539-9087,
doi:10.1145/2406336.2406351.

[101] Banach, R., ‘Formal refinement and partitioning of a fuel pump system for small aircraft in
hybrid Event-B,’ in ‘2016 10th International Symposium on Theoretical Aspects of Software
Engineering (TASE),’ July 2016 pp. 65–72, doi:10.1109/TASE.2016.16.

[102] Caillaud, B., Delahaye, B., Larsen, K. G., Legay, A., Pedersen, M. L., and Wąsowski, A.,
‘Compositional design methodology with constraint Markov chains,’ in ‘7th International
Conference on the Quantitative Evaluation of Systems,’ September 2010 pp. 123–132, doi:
10.1109/QEST.2010.23.

[103] Delahaye, B., Larsen, K. G., Legay, A., Pedersen, M. L., and Wąsowski, A., ‘Consistency and
refinement for interval Markov chains,’ Journal of Logic and Algebraic Programming, April
2012, 81(3), pp. 209–226, ISSN 15678326, doi:10.1016/j.jlap.2011.10.003.

[104] Chadha, R. and Viswanathan, M., ‘A counterexample-guided abstraction-refinement framework
for Markov decision processes,’ ACM Trans. on Computational Logic, November 2010, 12(1),
pp. 1:1–1:49, ISSN 1529-3785, doi:10.1145/1838552.1838553.

[105] Kattenbelt, M., Kwiatkowska, M., Norman, G., and Parker, D., ‘A game-based abstraction-
refinement framework for Markov decision processes,’ Formal Methods in System Design, Septem-
ber 2010, 36(3), pp. 246–280, ISSN 0925-9856, 1572-8102, doi:10.1007/s10703-010-0097-6.

[106] Mitsch, S., Quesel, J.-D., and Platzer, A., ‘Refactoring, refinement, and reasoning,’ in C. Jones,
P. Pihlajasaari, and J. Sun, editors, ‘FM 2014: Formal Methods,’ Lecture Notes in Computer
Science, Springer International Publishing, Cham, ISBN 978-3-319-06410-9, 2014 pp. 481–496,
doi:10.1007/978-3-319-06410-9_33.

[107] Basile, D., Di Giandomenico, F., and Gnesi, S., ‘A refinement approach to analyse critical
cyber-physical systems,’ in A. Cerone and M. Roveri, editors, ‘Software Engineering and
Formal Methods,’ Lecture Notes in Computer Science, Springer International Publishing, ISBN
978-3-319-74781-1, 2018 pp. 267–283.

134

[108] Ishigooka, T., Saissi, H., Piper, T., Winter, S., and Suri, N., ‘Safety verification utilizing
model-based development for safety critical cyber-physical systems,’ Journal of Information
Processing, 2017, 25, pp. 797–810, ISSN 1882-6652, doi:10.2197/ipsjjip.25.797.

[109] Mens, T. and Van Gorp, P., ‘A Taxonomy of Model Transformation,’ Electronic Notes in
Theoretical Computer Science, March 2006, 152, pp. 125–142, ISSN 15710661, doi:10.1016/j.
entcs.2005.10.021.

[110] Gerber, A., Lawley, M., Raymond, K., Steel, J., and Wood, A., ‘Transformation: The missing
link of MDA,’ in ‘Graph Transformation,’ pp. 90–105, Springer, 2002.

[111] Ameller, D., Franch, X., and Cabot, J., ‘Dealing with Non-Functional Requirements in Model-
Driven Development,’ in ‘Requirements Engineering Conference (RE), 2010 18th IEEE Interna-
tional,’ September 2010 pp. 189–198, doi:10.1109/RE.2010.32.

[112] Röttger, S. and Zschaler, S., ‘Model-Driven Development for Non-functional Properties: Re-
finement Through Model Transformation,’ in T. Baar, A. Strohmeier, A. Moreira, and S. J.
Mellor, editors, ‘«UML» 2004 — The Unified Modeling Language. Modeling Languages and
Applications,’ Number 3273 in Lecture Notes in Computer Science, pp. 275–289, Springer
Berlin Heidelberg, ISBN 978-3-540-23307-7 978-3-540-30187-5, 2004.

[113] Rodrigues, G. N., Rosenblum, D. S., and Uchitel, S., ‘Reliability Prediction in Model-Driven
Development,’ in L. Briand and C. Williams, editors, ‘Model Driven Engineering Languages
and Systems,’ Number 3713 in Lecture Notes in Computer Science, pp. 339–354, Springer
Berlin Heidelberg, ISBN 978-3-540-29010-0 978-3-540-32057-9, 2005.

[114] Kent, S. and Smith, R., ‘The Bidirectional Mapping Problem,’ Electronic Notes in Theoretical
Computer Science, June 2003, 82(7), pp. 151–165, ISSN 1571-0661, doi:10.1016/S1571-0661(04)
80753-9.

[115] Berg, H. and Møller Pedersen, B., ‘Type-Safe Symmetric Composition of Metamodels Using
Templates,’ in Ø. Haugen, R. Reed, and R. Gotzhein, editors, ‘System Analysis and Modeling:
Theory and Practice,’ Number 7744 in Lecture Notes in Computer Science, pp. 160–178,
Springer Berlin Heidelberg, ISBN 978-3-642-36756-4 978-3-642-36757-1, 2013.

[116] Feng, S. and Zhang, L., ‘Model Transformation for Cyber Physical Systems,’ in H. Y. Jeong,
M. S. Obaidat, N. Y. Yen, and J. J. J. H. Park, editors, ‘Advances in Computer Science and
its Applications,’ Number 279 in Lecture Notes in Electrical Engineering, pp. 83–87, Springer
Berlin Heidelberg, ISBN 978-3-642-41673-6 978-3-642-41674-3, 2014.

[117] Lichen, L., ‘Model Integration and Model Transformation Approach for Multi-Paradigm Cyber
Physical System Development,’ in H. Selvaraj, D. Zydek, and G. Chmaj, editors, ‘Progress
in Systems Engineering,’ Number 330 in Advances in Intelligent Systems and Computing, pp.
629–635, Springer International Publishing, ISBN 978-3-319-08421-3 978-3-319-08422-0, 2015.

[118] Passarini, R., Buss Becker, L., and Farines, J.-M., ‘The assisted transformation of models:
Supporting cyber-physical systems design by extracting architectural aspects and operating
modes from Simulink functional models,’ in ‘2013 III Brazilian Symposium on Computing
Systems Engineering (SBESC),’ December 2013 pp. 47–52, doi:10.1109/SBESC.2013.25.

[119] Passarini, R. F., Farines, J.-M., Fernandes, J. M., and Becker, L. B., ‘Cyber-physical systems
design: transition from functional to architectural models,’ Design Automation for Embedded
Systems, December 2015, 19(4), pp. 345–366, ISSN 1572-8080, doi:10.1007/s10617-015-9164-y.

[120] Kuo, W. and Zuo, M. J., Optimal reliability modeling: principles and applications, John Wiley
& Sons, 2003.

[121] Jarus, N. and Sarvestani, S. S., ‘Reliability modeling with the MIS technique,’ 2015.

135

[122] Acker, B. V., Oakes, B. J., Moradi, M., Demeulenaere, P., and Denil, J., ‘Validity frame concept
as effort-cutting technique within the verification and validation of complex cyber-physical
systems,’ 2020, p. 10.

[123] Van Mierlo, S., Oakes, B. J., Van Acker, B., Eslampanah, R., Denil, J., and Vangheluwe, H.,
‘Exploring validity frames in practice,’ in O. Babur, J. Denil, and B. Vogel-Heuser, editors,
‘Systems Modelling and Management,’ Communications in Computer and Information Science,
Springer International Publishing, Cham, ISBN 978-3-030-58167-1, 2020 pp. 131–148, doi:
10.1007/978-3-030-58167-1_10.

[124] Karnopp, D., Margolis, D. L., and Rosenberg, R. C., System dynamics: modeling and simulation
of mechatronic systems, Wiley, New York, 3rd ed edition, 2000, ISBN 978-0-471-33301-2.

[125] Bliudze, S., Furic, S., Sifakis, J., and Viel, A., ‘Rigorous design of cyber-physical systems,’
Software & Systems Modeling, June 2019, 18(3), pp. 1613–1636, ISSN 1619-1374, doi:10.1007/
s10270-017-0642-5.

[126] Trent, H. M., ‘Isomorphisms between oriented linear graphs and lumped physical systems,’
The Journal of the Acoustical Society of America, June 1955, 27(3), p. 500, ISSN 0001-4966,
doi:10.1121/1.1907949, publisher: Acoustical Society of AmericaASA.

[127] Davey, B. A. and Priestley, H. A., Introduction to Lattices and Order, Cambridge university
press, 2002.

136

VITA

Natasha Amelia Jarus (on left, Figure V.1) received her Bachelor of Science in Computer

Science, along with a minor in Mathematics, from the Missouri University of Science and Technology

in December 2013. During her undergraduate career, she participated in undergraduate research

with Dr. Sahra Sedigh Sarvestani on a project which she continued into her Ph.D program. She

continued her education at the Missouri University of Science and Technology, receiving her Doctor

of Philosophy in Computer Engineering in December 2021.

She worked as a Graduate Research Assistant from 2014 to 2021; during this time, she

was a recipient of two Graduate Assistantships in Areas of National Need fellowships from the U.S.

Department of Education. In addition, she worked as a Graduate Instructor from 2015 to 2018 for

the Computer Engineering, Computer Science, and Mathematics departments. She created curricula

for two courses: a special topics course on the Haskell programming language for junior and senior

undergraduate students and the Data Structures Laboratory course for freshmen undergraduate

students, which is now a required course for all students pursuing a bachelor’s degree in Computer

Science. She also co-authored the textbook for the Data Structures Laboratory course, Tools for

Programmers. Furthermore, she led multiple workshops for prospective college students in cooperation

Figure V.1. Hengineerin’

137

with the Society for Women Engineers, Expanding Your Horizons, and the Kaleidoscope Discovery

Center. During the 2020–2021 academic year, she served as the Electrical and Computer Engineering

department representative to the Missouri S&T Council of Graduate Students.

In 2021, she became a full-time employee of ngrok at their Seattle, Washington office,

developing software to enable programmers to introspect network traffic and to provide turn-key

network service features such as authentication, load balancing, and link redundancy.

She was a member of the Institute of Electrical and Electronic Engineers, the IEEE Eta

Kappa Nu honors society, the Association for Computing Machinery, the American Mathematical

Society, the Association for Women in Mathematics, the Missouri S&T Intelligent Systems Center,

and the Missouri S&T Center for Electromagnetic Compatibility.

	ABSTRACT
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF ILLUSTRATIONS
	LIST OF TABLES
	Introduction
	Instrumentation and Modeling of the Effects of Electromagnetic Interference and Electrostatic Discharge on Software
	Complex Hybrid System Metamodeling
	Research Projects and Contributions
	Outline

	EMD ANALYSIS
	Part 1: Instrumentation and Analysis for EMD
	ESD Instrumentation Approaches
	EMI Instrumentation Approaches
	System Monitoring and Anomaly Detection Approaches
	Summary

	Software Instrumentation Approach
	ESD Instrumentation
	Initial Approach
	Improved Approach

	EMI Instrumentation

	EMD Experiment Design
	Experiment Design
	ESD Experiment Design
	EMI Experiment Design

	Experimental Data
	Collected ESD Experiment Data
	Constructing execution graphs
	Constructing the unified execution graph
	Graph analysis

	Collected EMI Experiment Data

	Statistical Analysis of Peripheral Operation
	Analysis of Data from ESD Instrumentation
	Registers of Interest
	Execution Graphs
	TLP pulse voltage

	Analysis of Data from EMI Experiments
	Variance & Dispersion
	Autocorrelation & Serial Dependence
	Unsigned serial dependence
	Signed serial dependence

	Classification of Peripheral Operation
	Detecting ESD Events
	Training
	Classification
	System State Transitions
	Delta

	Detecting EMI Events
	Classification Events
	Classification Techniques
	Training and Evaluation Approach
	Results

	CHS METAMODELING
	Part 2: Metamodeling for Complex Hybrid Systems
	Overview of Modeling and Metamodeling
	Metamodeling Approaches
	Refinement and Generalization of Models
	Model Transformation Approaches
	Summary

	Abstract Interpretation of Models
	Soundness and Completeness
	Semantics of Programs and Systems
	Specifying System Semantics
	Specifying Model Semantics
	Relating Models and Properties
	Abstraction and Concretization

	Refinement & Generalization
	Markov Imbeddable Structure Models
	Properties of MIS Reliability Models
	Equivalences
	Well-formedness properties

	Examples
	Generalization of MIS Properties
	One-step generalizations of dependencies
	Multi-step generalization of dependencies
	Generalization as a partial order

	Refinement of MIS Properties
	One-step refinements
	Multi-step refinements
	Refinement as the dual of generalization

	Connecting MIS Models With Their Properties
	The properties lattice
	MIS models
	Abstraction and concretization
	Example

	Superstates and Non-deterministic Choice
	Non-deterministic choice of causes and effects
	Well-formedness properties with non-deterministic choice
	Generalizations and refinements for non-deterministic choice

	Model Transformation
	Soundness
	Example

	Conclusions and Future Work
	Functional Modeling of EMD Effects
	Model Faithfulness
	Refinement and generalization for physical topology models

	APPENDICES
	Lattice Theory
	Partially Ordered Sets
	Lattices
	Functions on Posets
	Powersets

	Galois Connections
	Abstract Interpretation
	Interpretation, Concretely
	Lattices of Properties
	Interpretation, Abstractly

	REFERENCES
	VITA

